|
Abstract We proposed a model with non reciprocal coupling coefficients, in which the imaginary parts γ indicate the phase delay or exceed term. The distributions of band structure and the group velocity are both characterized as a function of the coupling. we studied the system's topological states and group velocity control. The results show that the movement and breaking of Dirac points exist in the energy band of the system. By changing the coupling coefficients, the conversion between any topological states corresponds to different Chern number. Topological edge states exist in topological non-trivial systems that correspond to the two different Chern numbers. Besides, it is also found that both the coupling coefficient and the wave vector can cause the oscillation of the pulse group velocity. At the same time, the topological state can suppress the amplitude of the group velocity profiles. Our findings enrich the theory of light wave manipulation in high-dimensional photonic lattices and provide a novel view for realizing linear localization and group velocity regulation of light waves, which has potential application in high-speed optical communication and quantum information fields.
|
Received: 30 June 2023
Revised: 23 October 2023
Accepted manuscript online: 24 October 2023
|
PACS:
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174307). |
Corresponding Authors:
Xinyuan Qi
E-mail: qixycn@nwu.edu.cn
|
Cite this article:
Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元) Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice 2023 Chin. Phys. B 32 114213
|
[1] Xiao D, Jiang J, Shin J H, Wang W B, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801 [2] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 [3] Hao X, Wu W, Zhu J, Song B, Meng Q, Wu M,Hua C, Yang S A and Zhou M 2022 J. Phys. Condens. Matter 34 255504 [4] Heide C, Kobayashi Y and Baykusheva D R, Jain D, Sobota J A, Hashimoto M, Kirchmann P S, Oh S, Heinz T F, Reis D A and Ghimire S 2022 Nat. Photonics 16 620624 [5] Khanikaev A B and Shvets G 2017 Nat. Photonics 11 763773 [6] Zhen B and Redondo A B 2022 Nat. Commun. 13 2249 [7] Price H, Chong Y, Khanikaev A, Schomerus H, Maczewsky L J, Kremer M, Heinrich M, Szameit A, Zilberberg O and Yang Y 2022 J. Phys. Photonics 4 032501 [8] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297 [9] Han S H, Jeong S G, Kim S W, Kim T H and Cheon S 2020 Phys. Rev. B 102 235411 [10] Zhong J, Wang K, Park Y, Asadchy V, Wojcik C C, Dutt A and Fan S 2021 Phys. Rev. B 104 125416 [11] Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130 [12] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298302 [13] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 [14] Parappurath N, Alpeggiani F, Kuipers L and Verhagen E 2020 Sci. Adv. 6 10 [15] Yin J, Tan C, Barcons-Ruiz D, et al. 2022 Science 375 1398 [16] Cheng H, Sha Y, Liu R, Fang C and Lu L 2020 Phys. Rev. Lett. 124 104301 [17] Cai X, Ye L, Qiu C, Xiao M, Yu R, Ke M and Liu Z 2020 Light Sci. Appl. 9 38 [18] Kominis Y, Bountis T and Flach S 2016 Sci. Rep. 6 33699 [19] Zhang W, Di F, Zheng X, Sun H and Zhang X 2017 Nat. Commun. 14 1083 [20] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge, S, Ji H, Cava R J, Bernevig A B and Yazdani A 2014 Nat. Phys. 10 664669 [21] Zhou P, Liu G G, Ren X, Yang Y, Xue H, Bi L, Deng L, Chong Y and Zhang B 2020 Light Sci. Appl. 9 133 [22] Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L and Chen Y F 2019 Phys. Rev. Lett. 122 233903 [23] Chen Y F, Lan Z H and Zhu J 2022 Phys. Rev. Appl 17 054003 [24] Chen Y F, Meng F, Lan Z H, Jia B H and Huang X D 2021 Phys. Rev. Appl 15 034053 [25] Chen Y F, Lan Z H and Zhu J 2022 Nanophotonics 11 1345 [26] Chen Y F, Meng F, Jia B H, Li G Y and Huang X D 2019 Phys. Status Solidi RRL 13 1900175 [27] Feng L, El-Ganainy R and Ge L 2017 Nat Photonics 11 752 [28] Jiang J R, Chen W T and Chern R L 2020 Sci. Rep. 10 15726 [29] Hao X, Wu W, Zhu J, Song B, Meng Q,Wu M,Hua C, Yang S A and Zhou M 2022 J. Phys. Condens. Matter 34 255504 [30] Heide C, Kobayashi Y, Baykusheva D R, et al. 2022 Nat. Photonics 16 620624 [31] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772 [32] Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N and Sun Z 2021 Nat. Rev. Phys. 3 193206 [33] Bao L, Qi B, Dong D and Nori F 2021 Phys. Rev. A 103 042418 [34] Wang X, Li Y, Hu X, Gu R, Ao Y, Jiang P and Gong Q 2022 Phys. Rev. A 105 023531 [35] Parappurath N, Alpeggiani F, Kuipers L and Verhagen E 2020 Sci. Adv. 6 10 [36] Chen J, Liang W and Li Z Y 2019 Phys. Rev. B 99 014103 [37] Mukherjee S and Rechtsman M C 2021 Phys. Rev. X 11 041057 [38] Sounas D L and Alú A 2017 Nat. Photonics 11 774 [39] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinge T 2014 Nature 515 237 [40] Wang B K, Zhou X, Lin H and Bansil A 2021 Phys. Rev. B 104 L121108 [41] Lu Q, Cook J, Zhang X, Chen K Y, Snyder M, Nguyen D T, Reddy P V S, Qin B, Zhan S, Zhao L D, Kowalczyk P J, Brown S A, Chiang T C, Yang S A, Chang T R and Bian G 2022 Nat. Commun. 13 4603 [42] Fan H, Xia B, Tong L, Zheng S and Yu D 2019 Phys. Rev. Lett. 122 204301 [43] Su Z, Kang Y, Zhang B, Zhang Z and Jiang H 2019 Chin. Phys. B 28 117301 [44] Bhattacharya A and Pal B 2019 Phys. Rev. B 100 235145 [45] Zhang C X and Xu X S 2012 Chin. Phys. B 21 044213 [46] Padavić K, Suraj S. Hegde, DeGottardi W and Vishveshwara S 2018 Phys. Rev. B 98 024205 [47] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C and Zou C L 2021 Nat. Commun. 12 2389 [48] El-Ganainy R, Eisfeld A, Levy M and Christodoulides D N 2013 Appl. Phys. Lett. 103 161105 [49] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|