Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054209    DOI: 10.1088/1674-1056/20/5/054209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides

Feng Shuai(冯帅) and Wang Yi-Quan(王义全)
School of Science, Minzu University of China, Bejiing 100081, China
Abstract  This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity. When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities, the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.
Keywords:  photonic crystal      waveguide      group velocity      the finite-difference time-domain method  
Received:  09 September 2010      Revised:  19 October 2010      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904176 and 11004169), the Research Foundation of the State Ethnic Affairs Commission of People's Republic of China (Grant Nos. 10ZY05 and 09ZY012), and the "985 Project" and "211 Project" of the Ministry of Education of China.

Cite this article: 

Feng Shuai(冯帅) and Wang Yi-Quan(王义全) Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides 2011 Chin. Phys. B 20 054209

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Tokushima M and Yamada H 2002 IEEE J. Quantum Electron 38 753
[4] Kong W J, Yun M J, Wang M and Shan F K 2009 Acta Opt. Sin. 29 818 (in Chinese)
[5] Han S Z, Tian J, Ren C, Xu X S, Li Z Y, Cheng B Y and Zhang D Z 2005 Chin. Phys. Lett. 22 1934
[6] Fan S, Villeneuve P R, Joannopoulos J D and Haus H A 1998 Phys. Rev. Lett. 80 960
[7] Zhang Z Y and Qiu M 2006 J. Opt. Soc. Am. B 23 104
[8] Takano S, Song B S, Asano T and Noda S 2006 Opt. Express 14 3491
[9] Bayindir M and Ozbay E 2002 Opt. Express 10 1279
[10] Villeneuve P R, Abrams D S, Fan S and Joannopoulos J D 1996 Opt. Lett. 21 2017
[11] Hu X Y, Liu Y H, Tie J, Cheng B Y and Zhang D Z 2005 Appl. Phys. Lett. 86 121102
[12] Olivier S, Smith C, Rattier M, Benisty H, Weisbuch C, Krauss T, Houdre R and Oesterle U 2001 Opt. Lett. 26 1019
[13] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[14] Wang Y Q, Liu J, Zhang B, Feng S and Li Z Y 2006 Phys. Rev. B 73 155107
[15] Shen H J, Tian H P and Ji Y F 2010 Acta Phys. Sin. 59 2820 (in Chinese)
[16] Du X Y, Zheng W H, Ren G, Wang K, Xing M X and Chen L H 2008 Acta Phys. Sin. 57 571 (in Chinese)
[17] Ye W M, Luo Z,Yuan X D and Zeng C 2010 Chin. Phys. B 19 054215
[18] Yee K S 1966 IEEE Trans Antenna Propag 14 302
[19] Berenger J P 1996 J. Comput. Phys. 127 363 endfootnotesize
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[4] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[9] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[15] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
No Suggested Reading articles found!