Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 113201    DOI: 10.1088/1674-1056/ace317
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Role of excited states in helium-like ions on high-order harmonic generation

Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊)
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  We theoretically investigate high-order harmonic generation (HHG) of helium (He), lithium cation (Li+), and beryllium dication (Be2+) using the time-dependent Hartree-Fock method to solve the three-dimensional time-dependent Schrödinger equation. It is found that the intensity of the HHG increases significantly from a certain harmonic order below the ionization threshold, and the initial position of the enhancement does not depend on the intensity or the wavelength of the driving laser field. Further analysis shows that excited states play an important role on this enhancement, consistent with the excited-state tunneling mechanism [Phys. Rev. Lett. 116 123901 (2016)]. Our results unambiguously show that excited-state tunneling is essential for understanding the enhancement of HHG. Accordingly, a four-step model is herein proposed to illustrate the multiphoton excitation effect in helium-like ions, which enriches the physics of HHG enhancement.
Keywords:  high-order harmonic generation      ultrafast phenomena      excited states  
Received:  10 May 2023      Revised:  22 June 2023      Accepted manuscript online:  30 June 2023
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  31.90.+s (Other topics in the theory of the electronic structure of atoms and molecules)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274294 and 12075036).
Corresponding Authors:  Jiang-Hua Luo     E-mail:  jhluo09@qq.com

Cite this article: 

Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊) Role of excited states in helium-like ions on high-order harmonic generation 2023 Chin. Phys. B 32 113201

[1] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
[2] Lewenstein M 2002 Science 297 1131
[3] Mairesse Y, de Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taŀeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540
[4] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
[5] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[6] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P B and Ivanov M Y 2009 Nature 460 972
[7] Peng P, Marceau C and Villeneuve D M 2019 Natl. Rev. Phys. 1 144
[8] He L X, Sun S Q, Lan P F, He Y Q, Wang B C, Wang P, Zhu X S, Li L, Cao W, Lu P X and Lin C D 2022 Nat. Commun. 13 4595
[9] Huang Y D, Zhao J, Shu Z, Zhu Y, Liu J L, Dong W P, Wang X W, Lü Z H, Zhang D W, Yuan J M, Chen J and Zhao Z X 2021 Ultrafast Sci. 2021 9837107
[10] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M and Chang Z H 2017 Nat. Commun. 8 186
[11] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O and Dudovich N 2012 Nature 485 343
[12] Silva R E F, Blinov I V, Rubtsov A N, Smirnova O and Ivanov M 2018 Nat. Photon. 12 266
[13] Zhang Y F, Huang T F, Li J P, Yang K, Li L, Zhu X S, Lan P F and Lu P X 2021 Chin. Phys. B 30 074204
[14] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[15] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[16] Liu J C, Kohler M C, Keitel C H and Hatsagortsyan K Z 2011 Phys. Rev. A 84 063817
[17] Henkel J, Witting T, Fabris D, Lein M, Knight P L, Tisch J W G and Marangos J P 2013 Phys. Rev. A 87 043818
[18] Hostetter J A, Tate J L, Schafer K J and Gaarde M B 2010 Phys. Rev. A 82 023401
[19] Xiong W H, Geng J W, Tang J Y, Peng L Y and Gong Q H 2014 Phys. Rev. Lett. 112 233001
[20] Serebryannikov E E and Zheltikov A M 2016 Phys. Rev. Lett. 116 123901
[21] Zhang B, Yuan J M and Zhao Z X 2015 Comput. Phys. Commun. 194 84
[22] Sarantseva T S, Silaev A A, Romanov A A, Vvedenskii N V and Frolov M V 2021 Opt. Express 29 1428
[23] Tong X M, Zhao Z X and Lin C D 2002 Phy. Rev. A 66 033402
[1] High-order harmonic generation of ZnO crystals in chirped and static electric fields
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(1): 013102.
[2] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[3] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[6] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[7] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[8] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[11] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[12] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[13] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[14] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[15] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
No Suggested Reading articles found!