|
|
Role of excited states in helium-like ions on high-order harmonic generation |
Jiang-Hua Luo(罗江华)† and Jia-Jun Xiao(肖佳俊) |
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China |
|
|
Abstract We theoretically investigate high-order harmonic generation (HHG) of helium (He), lithium cation (Li+), and beryllium dication (Be2+) using the time-dependent Hartree-Fock method to solve the three-dimensional time-dependent Schrödinger equation. It is found that the intensity of the HHG increases significantly from a certain harmonic order below the ionization threshold, and the initial position of the enhancement does not depend on the intensity or the wavelength of the driving laser field. Further analysis shows that excited states play an important role on this enhancement, consistent with the excited-state tunneling mechanism [Phys. Rev. Lett. 116 123901 (2016)]. Our results unambiguously show that excited-state tunneling is essential for understanding the enhancement of HHG. Accordingly, a four-step model is herein proposed to illustrate the multiphoton excitation effect in helium-like ions, which enriches the physics of HHG enhancement.
|
Received: 10 May 2023
Revised: 22 June 2023
Accepted manuscript online: 30 June 2023
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
31.90.+s
|
(Other topics in the theory of the electronic structure of atoms and molecules)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274294 and 12075036). |
Corresponding Authors:
Jiang-Hua Luo
E-mail: jhluo09@qq.com
|
Cite this article:
Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊) Role of excited states in helium-like ions on high-order harmonic generation 2023 Chin. Phys. B 32 113201
|
[1] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689 [2] Lewenstein M 2002 Science 297 1131 [3] Mairesse Y, de Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taŀeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540 [4] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817 [5] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [6] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P B and Ivanov M Y 2009 Nature 460 972 [7] Peng P, Marceau C and Villeneuve D M 2019 Natl. Rev. Phys. 1 144 [8] He L X, Sun S Q, Lan P F, He Y Q, Wang B C, Wang P, Zhu X S, Li L, Cao W, Lu P X and Lin C D 2022 Nat. Commun. 13 4595 [9] Huang Y D, Zhao J, Shu Z, Zhu Y, Liu J L, Dong W P, Wang X W, Lü Z H, Zhang D W, Yuan J M, Chen J and Zhao Z X 2021 Ultrafast Sci. 2021 9837107 [10] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M and Chang Z H 2017 Nat. Commun. 8 186 [11] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O and Dudovich N 2012 Nature 485 343 [12] Silva R E F, Blinov I V, Rubtsov A N, Smirnova O and Ivanov M 2018 Nat. Photon. 12 266 [13] Zhang Y F, Huang T F, Li J P, Yang K, Li L, Zhu X S, Lan P F and Lu P X 2021 Chin. Phys. B 30 074204 [14] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [15] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [16] Liu J C, Kohler M C, Keitel C H and Hatsagortsyan K Z 2011 Phys. Rev. A 84 063817 [17] Henkel J, Witting T, Fabris D, Lein M, Knight P L, Tisch J W G and Marangos J P 2013 Phys. Rev. A 87 043818 [18] Hostetter J A, Tate J L, Schafer K J and Gaarde M B 2010 Phys. Rev. A 82 023401 [19] Xiong W H, Geng J W, Tang J Y, Peng L Y and Gong Q H 2014 Phys. Rev. Lett. 112 233001 [20] Serebryannikov E E and Zheltikov A M 2016 Phys. Rev. Lett. 116 123901 [21] Zhang B, Yuan J M and Zhao Z X 2015 Comput. Phys. Commun. 194 84 [22] Sarantseva T S, Silaev A A, Romanov A A, Vvedenskii N V and Frolov M V 2021 Opt. Express 29 1428 [23] Tong X M, Zhao Z X and Lin C D 2002 Phy. Rev. A 66 033402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|