CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic excitations of diagonally coupled checkerboards |
Tingting Yan(颜婷婷)1, Shangjian Jin(金尚健)1, Zijian Xiong(熊梓健)1,3, Jun Li(李军)1,2,†, and Dao-Xin Yao(姚道新)1,‡ |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 3 Department of Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract By using quantum Monte Carlo based stochastic analytic continuation (QMC-SAC) and spin wave theory, we study magnetic excitations of Heisenberg models with diagonally coupled checkerboard structures. We consider three kinds of checkerboard models (DC 2×2, DC 3×3, and CDC 3×3) consisting nearest-neighbor strong J1 and weak J2 antiferromagnetic interactions. When the coupling ratio g=J2/J1 approaches 1, all three diagonal checkerboards have the same long-range antiferromagnetic Néel order at T=0. When g decreases, the quantum fluctuation can drive DC 2×2 model to quantum paramagnetic state, while DC 3×3 and CDC 3×3 models still have the long-range Néel order. By calculating the magnetic excitations at different coupling ratios, we find that the low-energy part of magnetic excitations calculated by QMC-SAC can be well explained by the spin wave theory. However, the high-energy parts even deep in the long-range antiferromagnetic phase are beyond the spin wave description. Compared to the g=1 uniform square lattice, the high-energy excitations are more rich in our models. Our study may also draw the attention to the high-energy exctitaions beyond the spin wave theory.
|
Received: 12 July 2021
Revised: 30 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
02.70.Uu
|
(Applications of Monte Carlo methods)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203), the National Natural Science Foundation of China (Grant No. 11974432), GBABRF-2019A1515011337, and Leading Talent Program of Guangdong Special Projects. |
Corresponding Authors:
Jun Li, Dao-Xin Yao
E-mail: ljcj007@ysu.edu.cn;yaodaox@mail.sysu.edu.cn
|
Cite this article:
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新) Magnetic excitations of diagonally coupled checkerboards 2021 Chin. Phys. B 30 107505
|
[1] Manousakis E 1991 Rev. Mod. Phys. 63 1 [2] Barzykin V and Pines D 1995 Phys. Rev. B 52 13585 [3] Andersen B M and Hedegård P 2005 Phys. Rev. Lett. 95 037002 [4] Andersen B M, Hirschfeld P J, Kampf A P and Schmid M 2007 Phys. Rev. Lett. 99 147002 [5] Lee-Hone N R, Dodge J S and Broun D M 2017 Phys. Rev. B 96 024501 [6] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003 [7] Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L and Dai P 2008 Nat. Mater. 7 953 [8] de la Cruz C, Huang Q, Lynn J W, Li J, Ⅱ W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P 2008 Nature 453 899 [9] Lumsden M D and Christianson A D 2010 J. Phys.: Condens. Matter 22 203203 [10] Dai P 2015 Rev. Mod. Phys. 87 855 [11] Wen J, Xu G, Gu G, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503 [12] Máca F, Mašek J, Stelmakhovych O, Martí X, Reichlová H, Uhlířová K, Beran P, Wadley P, Novak V and Jungwirth T 2012 J. Magn. Magn. Mater. 324 1606 [13] Hu D, Lu X, Zhang W, Luo H, Li S, Wang P, Chen G, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P, Yu W and Dai P 2015 Phys. Rev. Lett. 114 157002 [14] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [15] Manousakis E and Salvador R 1988 Phys. Rev. Lett. 60 840 [16] Singh R R P and Huse D A 1989 Phys. Rev. B 40 7247 [17] Greven M, Birgeneau R J, Endoh Y, Kastner M A, Keimer B, Matsuda M, Shirane G and Thurston T R 1994 Phys. Rev. Lett. 72 1096 [18] Wessel S, Jagannathan A and Haas S 2003 Phys. Rev. Lett. 90 177205 [19] Zhao B, Takahashi J and Sandvik A W 2020 Chin. Phys. B 29 057506 [20] Sun G, Ma N, Zhao B, Sandvik A W and Meng Z Y 2021 Chin. Phys. B 30 067505 [21] Liang S 1990 Phys. Rev. B 42 6555 [22] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694 [23] Sandvik A W 2007 Phys. Rev. B 98 227202 [24] Anderson P W 1987 Science 235 1196 [25] Balents L 2010 Nature 464 199 [26] 2004 Phys. Rev. B 69 014424 [27] Campos I, Cotallo-Aban M, Martin-Mayor V, Perez-Gaviro S and Tarancon A 2006 Phys. Rev. Lett. 97 217204 [28] Guo H M 2016 Sci. China-Phys. Mech. Astron. 59 637401 [29] Guo J, Sun J, Zhu X, Li C A, Guo H and Feng S 2021 arXiv: 2010.05402 [30] Peng C, He R Q and Lu Z Y 2020 Phys. Rev. B 102 045110 [31] Coldea R, Hayden S M, Aeppli G, Perring T G, Frost C D, Mason T E, Cheong S W and Fisk Z 2001 Phys. Rev. Lett. 86 5377 [32] Headings N S, Hayden S M, Coldea R and Perring T G 2010 Phys. Rev. Lett. 105 247001 [33] Rønnow H M, McMorrow D F, Coldea R, Harrison A, Youngson I D, Perring T G, Aeppli G, Syljuåsen O, Lefmann K and Rischel C 2001 Phys. Rev. Lett. 87 037202 [34] Christensen N B, Rønnow H M, McMorrow D F, Harrison A, Perring T G, Enderle M, Coldea R, Regnault L P and Aeppli G 2007 Proc. Natl. Acad. Sci. USA 104 15264 [35] Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, TregennaPiggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and Rønnow H M 2015 Nat. Phys. 11 62 [36] Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072 [37] Yu S L, Wang W, Dong Z Y, Yao Z J and Li J X 2018 Phys. Rev. B 98 134410 [38] Tennant D A, Broholm C, Reich D H, Nagler S E, Granroth G E, Barnes T, Damle K, Xu G, Chen Y and Sales B C 2003 Phys. Rev. B 67 054414 [39] Notbohm S, Ribeiro P, Lake B, Tennant D A, Schmidt K P, Uhrig G S, Hess C, Klingeler R, Behr G, Büchner B, Reehuis M, Bewley R I, Frost C D, Manuel P and Eccleston R S 2007 Phys. Rev. Lett. 98 027403 [40] Bera A K, Wu J, Yang W, Bewley R, Boehm M, Xu J, Bartkowiak M, Prokhnenko O, Klemke B, Islam A T M N, Law J M, Wang Z and Lake B 2020 Nat. Phys. 16 625 [41] Xu Y, Xiong Z, Wu H Q and Yao D X 2019 Phys. Rev. B 99 085112 [42] Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S and Davis J C 2002 Science 295 466 [43] Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H and Davis J C 2004 Nature 430 1001 [44] Yao D X and Carlson E W 2008 Phys. Rev. B 77 024503 [45] Ran X X, Ma N and Yao D X 2019 Phys. Rev. B 99 174434 [46] Cheng J Q, Li J, Xiong Z, Wu H Q, Sandvik A W and Yao D X 2020 arxiV: 2011.02448 [47] Song Y, Yuan D, Lu X, Xu Z, Bourret-Courchesne E and Birgeneau R J 2019 Phys. Rev. Lett. 123 247205 [48] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406 [49] Ölschläger M, Wirth G, Kock T and Hemmerich A 2012 Phys. Rev. Lett. 108 075302 [50] Sandvik A W 1997 Phys. Rev. B 56 11678 [51] Wenzel S, Bogacz L and Janke W 2008 Phys. Rev. Lett. 101 127202 [52] Jiang F J 2012 Phys. Rev. B 85 014414 [53] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421 [54] Lin H Q 1990 Phys. Rev. B 42 6561 [55] Jeckelmann E 2002 Phys. Rev. B 66 045114 [56] Verstraete F and Cirac J I 2010 Phys. Rev. Lett. 104 190405 [57] Sandvik A W 1998 Phys. Rev. B 57 10287 [58] Syljuåsen O F 2008 Phys. Rev. B 78 174429 [59] Sandvik A W 2016 Phys. Rev. E 94 063308 [60] Shu Y R, Dupont M, Yao D X, Capponi S and Sandvik A W 2018 Phys. Rev. B 97 104424 [61] Sandvik A W 2010 AIP Conf. Proc. 1297 135 [62] des Cloizeaux J and Pearson J J 1962 Phys. Rev. 128 2131 [63] Melcher R L 1973 Phys. Rev. Lett. 30 125 [64] Locher P 1990 Phys. Rev. B 41 2537 [65] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431 [66] Syljuåsen O F 2006 Phys. Rev. B 73 245105 [67] Yao D X, Gustafsson J, Carlson E W and Sandvik A W 2010 Phys. Rev. B 82 172409 [68] Fritz L, Doretto R L, Wessel S, Wenzel S, Burdin S and Vojta M 2011 Phys. Rev. B 83 174416 [69] Yasuda S and Todo S 2013 Phys. Rev. E 88 061301 [70] Wallace D J and Zia R K P 1975 Phys. Rev. B 12 5340 [71] Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002 [72] Canali C M and Wallin M 1993 Phys. Rev. B 48 3264 [73] Lorenzana J, Seibold G and Coldea R 2005 Phys. Rev. B 72 224511 [74] Igarashi J I and Nagao T 2005 Phys. Rev. B 72014403 [75] Syromyatnikov A V 2010 J. Phys.: Condens. Matter 22 216003 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|