Abstract Realizing phase transitions via non-thermal sample manipulations is important not only for applications, but also for uncovering the underlying physics. Here, we report on the discovery of two distinct metal-insulator transitions in 1T-TaS2 via angle-resolved photoemission spectroscopy and in-situ rubidium deposition. At 205 K, the rubidium deposition drives a normal metal-insulator transition via filling electrons into the conduction band. While at 225 K, however, the rubidium deposition drives a bandwidth-controlled Mott transition as characterized by a rapid collapsing of Mott gap and a loss of spectral weight of the lower Hubbard band. Our result, from a doping-controlled perspective, succeeds in distinguishing the metallic, band-insulating, and Mott-insulating phases of 1T-TaS2, manifesting a delicate balance among the electron-itineracy, interlayer-coupling and Coulomb repulsion. We also establish an effective method to tune the balance between these interactions, which is useful in seeking exotic electronic phases and designing functional phase-changing devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 91421107, and 11574004) and the National Key Research and Development Program of China (Grant Nos. 2018YFA0305602 and 2016YFA0301003).
Corresponding Authors:
Yan Zhang
E-mail: yzhang85@pku.edu.cn
Cite this article:
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱) Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2 2023 Chin. Phys. B 32 107404
[1] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys.68 13 [2] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys.70 1039 [3] Eskes H, Meinders M B J and Sawatzky G A 1991 Phys. Rev. Lett.67 1035 [4] Takami H, Kanki T, Ueda S, Kobayashi K and Tanaka H 2012 Phys. Rev. B85 205111 [5] Perfetti L, Georges A, Florens S, Biermann S, Mitrovic S, Berger H, Tomm Y, Höchst H and Grioni M 2003 Phys. Rev. Lett.90 166401 [6] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater.7 960 [7] Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B49 16899 [8] Manzke R, Buslaps T, Pfalzgraf B, Skibowski M and Anderson O 1989 Europhys. Lett.8 195 [9] Perfetti L, Gloor T A, Mila F, Berger H and Grioni M 2005 Phys. Rev. B71 153101 [10] Kim J J, Yamaguchi W, Hasegawa T and Kitazawa K 1994 Phys. Rev. Lett.73 2103 [11] Martino E, Pisoni A, Ćirić L, Arakcheeva A, Berger H, Akrap A, Putzke C, Moll P J W, Batistić I, Tutiš E, Forró L and Semeniuk K 2020 npj 2D Mater. Appl.4 7 [12] Ritschel T, Trinckauf J, Koepernik K, Büchner B, Zimmermann M V, Berger H, Joe Y I, Abbamonte P and Geck J 2015 Nat. Phys.11 328 [13] Ritschel T, Berger H and Geck J 2018 Phys. Rev. B98 195134 [14] Lee S H, Goh J S and Cho D 2019 Phys. Rev. Lett.122 106404 [15] Stahl Q, Kusch M, Heinsch F, Garbarino G, Kretzschmar N, Hanff K, Rossnagel K, Geck J and Ritschel T 2020 Nat. Commun.11 1247 [16] Butler C J, Yoshida M, Hanaguri T and Iwasa Y 2020 Nat. Commun.11 2477 [17] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y 2020 Nat. Commun.11 4215 [18] Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Berger H, Biermann S, Cornaglia P S, Georges A and Wolf M 2006 Phys. Rev. Lett.97 067402 [19] Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science344 177 [20] Svetin D, Vaskivskyi I, Sutar P, Goreshnik E, Gospodaric J, Mertelj T and Mihailovic D 2014 Appl. Phys. Express7 103201 [21] Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A and Datta S 2015 Nano Lett.15 1861 [22] Ma Y, Wang Z, Hou Y, Wu D, Lu C and Petrovic C 2019 Phys. Rev. B99 045102 [23] Ma L, Ye C, Yu Y, Lu X F, Niu X, Kim S, Feng D, Tománek D, Son Y W, Chen X H and Zhang Y 2016 Nat. Commun.7 10956 [24] Qiao S, Li X, Wang N, Ruan W, Ye C, Cai P, Hao Z, Yao H, Chen X, Wu J, Wang Y and Liu Z 2017 Phys. Rev. X7 041054 [25] Ngankeu A S, Mahatha S K, Guilloy K, Bianchi M, Sanders C E, Hanff K, Rossnagel K, Miwa J A, Breth Nielsen C, Bremholm M and Hofmann P 2017 Phys. Rev. B96 195147 [26] Adelung R, Brandt J, Kipp L and Skibowski M 2001 Phys. Rev. B63 165327 [27] Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. Lett.95 126403 [28] Schmidt P, Murphy B, Kröger J, Jensen H and Berndt R 2006 Phys. Rev. B74 193407 [29] Rahn D J, Ludwig E, Buck J, Kronast F, Marczynski-Bühlow M, Kröger E, Kipp L and Rossnagel K 2011 Phys. Rev. B84 233105 [30] Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B and Sun Y P 2016 Phys. Rev. B94 125126 [31] Zhu X Y, Wang S, Jia Z Y, Zhu L, Li Q Y, Zhao W M, Xue C L, Xu Y J, Ma Z, Wen J, Yu S L, Li J X and Li S C 2019 Phys. Rev. Lett.123 206405 [32] Lin H, Huang W, Zhao K, Qiao S, Liu Z, Wu J, Chen X and Ji S H 2020 Nano Res.13 133 [33] Nakata Y, Yoshizawa T, Sugawara K, Umemoto Y, Takahashi T and Sato T 2018 ACS Appl. Nano Mater.1 1456 [34] Chen Y, Ruan W, Wu M, et al. 2020 Nat. Phys.16 218 [35] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA102 10451 [36] Geim A K and Grigorieva I V 2013 Nature499 419 [37] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol.9 768
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.