Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077505    DOI: 10.1088/1674-1056/abeee5
Special Issue: SPECIAL TOPIC — Twistronics
SPECIAL TOPIC—Twistronics Prev   Next  

Magnon bands in twisted bilayer honeycomb quantum magnets

Xingchuan Zhu(朱兴川)1, Huaiming Guo(郭怀明)2,†, and Shiping Feng(冯世平)1
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Key Laboratory of Micro-Nano Measurement-Manipulation and Physics(Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China
Abstract  We study the magnon bands of twisted bilayer honeycomb quantum magnets using linear spin wave theory. Although the interlayer coupling can be ferromagnetic or antiferromagnetic, we keep the intralayer one ferromagnetic to avoid possible frustration. For the interlayer ferromagnetic case, we find the magnon bands have similar features with the corresponding electronic energy spectrums. Although the linear dispersions near the Dirac points are preserved in the magnon bands of twisted bilayer magnets, their slopes are reduced with the decrease of the twist angles. On the other hand, the interlayer antiferromagnetic couplings generate quite different magnon spectra. The two single-layered magnon spectra are usually decoupled due to the opposite orientations of the spins in the two layers. We also develop a low-energy continuous theory for very small twist angles, which has been verified to fit well with the exact tight-binding calculations. Our results may be experimentally observed due to the rapid progress in two-dimensional magnetic materials.
Keywords:  magnon bands      twisted bilayer      quantum magnets      linear spin wave theory  
Received:  21 January 2021      Revised:  10 March 2021      Accepted manuscript online:  16 March 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.75.-c (Magnetic properties of nanostructures)  
  75.30.Ds (Spin waves)  
  71.70.Gm (Exchange interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774019, 11974051, and 11734002), the Fundamental Research Funds for the Central Universities and the HPC Resources at Beihang University, and the National Key Research and Development Program of China (Grant No. 2016YFA0300304).
Corresponding Authors:  Huaiming Guo     E-mail:  hmguo@buaa.edu.cn

Cite this article: 

Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平) Magnon bands in twisted bilayer honeycomb quantum magnets 2021 Chin. Phys. B 30 077505

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[2] Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601
[3] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926
[4] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1745
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 1059
[6] Roy B and Juričić V 2019 Phys. Rev. B 99 121407(R)
[7] Wu X, Hanke W, Fink M, Klett M and Thomale R 2020 Phys. Rev. B 101 121407
[8] Liu C, Zhang L, Chen W and Yang F 2018 Phys. Rev. Lett. 121 217001
[9] Balents L, Dean C R, Efetov D K and Young A F 2020 Nat. Phys. 16 134517
[10] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215
[11] Li X, Wu F and MacDonald A H 2019 arXiv preprint arXiv: 1907.12338
[12] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237
[13] Shi Y, Xu S, Ezzi M M A, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C and Novoselov K S 2020 arXiv preprint arXiv: 2004.12414
[14] Wang L, Shih E, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A and Dean C R 2020 Nat. Mater. 19 215
[15] An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y and Wang N 2020 Nanoscale Horiz. 01 1281
[16] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 237
[17] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H and Tutuc E 2019 Phys. Rev. Lett. 123 197702
[18] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 861
[19] Culchac F J, Del Grande G R R, Capaz R B, Chico L and Morell E S 2020 Nanoscale 12 4790
[20] May-Mann J and Hughes T L 2020 Phys. Rev. B 101 520
[21] Luo X and Zhang C 2020 arXiv preprint arXiv: 2008.01351
[22] González-Tudela A and Cirac J I 2019 Phys. Rev. A 100 053604
[23] Park J 2016 J. Phys.: Condens. Matter 28 075109
[24] Burch K S, Mandrus D and Park J 2018 Nature 563 47
[25] Gibertini M, Koperski M, Morpurgo A and Novoselov K 2019 Nat. Nanotechnol. 14 180506
[26] Luo Z, Tang J, Ma B, Zhang Z, Jin Q and Wang J 2012 Chin. Phys. Lett. 29 127501
[27] Tang J, Ma B, Zhang Z and Jin Q 2010 Chin. Phys. Lett. 27 077502
[28] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[29] Bultinck N, Chatterjee S and Zaletel M P 2020 Phys. Rev. Lett. 124 166601
[30] Seo K, Kotov V N and Uchoa B 2019 Phys. Rev. Lett. 122 5014
[31] Wu F and Das Sarma S S 2020 Phys. Rev. B 101 245126
[32] Alavirad Y and Sau J 2020 Phys. Rev. B 102 235123
[33] Thomson A, Chatterjee S, Sachdev S and Scheurer M S 2018 Phys. Rev. B 98 075109
[34] Gu X, Chen C, Leaw J N, Laksono E, Pereira V M, Vignale G and Adam S 2020 Phys. Rev. B 101 053604
[35] Huang T, Zhang L and Ma T 2019 Sci. Bull. 64 310
[36] Zhang W, Wong P K J, Zhu R and Wee A T S 2019 InfoMat 1 605
[37] Gao T, Zheng F, Wang X 2018 Acta Phys. Sin. 67 167101 (in Chinese)
[38] Li H, Ruan S and Zeng Y 2019 Adv. Mater. 31 166601
[39] Wang M, Huang C, Cheung C, Chen C, Tan S G, Huang T, Zhao Y, Zhao Y, Wu G, Feng Y, Wu H and Chang C 2020 Annalen der Physik 532 1900452
[40] Ningrum V P, Liu B, Wang W, Yin Y, Cao Y, Zha C, Xie H, Jiang X, Sun Y, Qin S, Chen X, Qin T, Zhu C, Wang L and Huang W 2020 Research 2020 1768918
[41] Ahn E C 2020 npj 2D Mater. Appl. 4 17
[42] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 Issu 6298
[43] Sun Y, Tong W and Luo X 2019 Phys. Chem. Chem. Phys. 21 24852
[44] Liu Y and Petrovic C 2017 Phys. Rev. B 96 054406
[45] Liu Y and Petrovic C 2018 Phys. Rev. B 97 014420
[46] Kim H H, Yang B, Li S, Jiang S, Jin C, Tao Z, Nichols G, Sfigakis F, Zhong S, Li C, Tian S, Cory D G, Miao G, Shan J, Mak K F, Lei H, Sun K, Zhao L and Tsen A W 2019 Proc. Nat. Acad. Sci. USA 116 11131
[47] Wu Z, Yu J and Yuan S 2019 Phys. Chem. Chem. Phys. 21 155149
[48] Zheng H, Yang B, Wang D, Han R, Du X and Yan Y 2014 Appl. Phys. Lett. 104 132403
[49] Zhang W, Guo H T, Jiang J, Tao Q C, Song X J, Li H and Huang J 2016 J. Appl. Phys. 120 235123
[50] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D and others 2018 Nat. Nanotechnol. 13 544
[51] Yang B, Zhang X, Yang H, Han X and Yan Y 2019 Appl. Phys. Lett. 114 192405
[52] Onsager L 1944 Phys. Rev. 65 117
[53] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 25220
[54] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 7750
[55] Balents L 2010 Nature 464 132403
[56] Chang C, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L and others 2013 Science 340 013904
[57] Lee K H, Chung S B, Park K and Park J 2018 Phys. Rev. B 97 180401(R)
[58] Rozhkov A V, Sboychakov A O, Rakhmanov A L and Nori F 2016 Phys. Rep. 648 1–104
[59] Li S, Liu K, Yin L, Wang W, Yan W, Yang X, Yang J, Liu H, Jiang H and He L 2017 Phys. Rev. B 96 155416
[60] Bistritzer R and MacDonald A H 2011 Proc. Nat. Acad. Sci. USA 108 12233
[61] Lopes dos Santos d S J M B, Peres N M R and Castro Neto N A H 2012 Phys. Rev. B 86 4155449
[62] Suárez Morell M E, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407(R)
[63] Trambly de Laissardire d L G, Mayou D and Magaud L 2010 Nano Lett. 10 054406
[64] Bistritzer R and MacDonald A H 2011 Proc. Nat. Acad. Sci. USA 108 12233
[65] Lopes dos Santos d S J M B, Peres N M R and Castro Neto N A H 2012 Phys. Rev. B 86 014420
[66] Koshino M 2015 New J. Phys. 17 015014
[67] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 11131
[68] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 544
[69] Ma Z, Li S, Zheng Y, Xiao M, Jiang H, Gao J and Xie X 2021 Sci. Bull. 66 192405
[70] Abouelkomsan A, Liu Z and Bergholtz E J 2020 Phys. Rev. Lett. 124 106803
[71] Balents L 2019 SciPost Physics 7 048
[72] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H and others 2017 Nature 546 1133
[73] Song T, Cai X, Tu M W, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watan K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science 360 1214
[74] Klein D R, MacNeill D, Lado J L, Soriano D, NavarroMoratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J and Jarillo-Herrero P 2018 Science 360 1181
[75] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F and Maletinsky P 2019 Science 364 199
[76] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 167
[77] Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K, McGuire M A, Xiao D and others 2020 Nat. Phys. 17 20
[1] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[2] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[3] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[4] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[5] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[8] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[9] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[10] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[11] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
No Suggested Reading articles found!