Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100602    DOI: 10.1088/1674-1056/ace3b7
GENERAL Prev   Next  

Quantum estimation of rotational speed in optomechanics

Hao Li(李浩) and Jiong Cheng(程泂)
Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  We study the quantum Fisher information (QFI) of the angular velocity of rotation in an optomechanical system. Based on the Gaussian measurements method, we derive the explicit form of a single-mode Gaussian QFI, which is valid for arbitrary angular velocity of rotation. The information about the angular velocity to be measured is contained in the optical covariance matrix, which can be experimentally determined via homodyne measurement. We find that QFI increases rapidly when driving the system close to the unstable boundary. This result can be attributed to the strong nonlinearity of the system at the unstable boundary. Our results indicate the possibility of using an optomechanical system for high precision detection of the angular velocity of rotation.
Keywords:  optomechanical system      Fisher information  
Received:  30 March 2023      Revised:  05 June 2023      Accepted manuscript online:  04 July 2023
PACS:  06.30.Gv (Velocity, acceleration, and rotation)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704205 and 12074206), the National Natural Science Foundation of Zhejiang Province (Grant No. LY22A040005), and K.C.Wong Magna Fund in Ningbo University.
Corresponding Authors:  Jiong Cheng     E-mail:  chengjiong@nbu.edu.cn

Cite this article: 

Hao Li(李浩) and Jiong Cheng(程泂) Quantum estimation of rotational speed in optomechanics 2023 Chin. Phys. B 32 100602

[1] Pezzé L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[2] Albarrán-Arriagada F, Alvarado Barrios G, Sanz M, Romero G, Lamata L, Retamal J C and Solano E 2018 Phys. Rev. A 97 032320
[3] Zhou L K, Xu J H, Zhang W Z, Cheng J, Yin T S, Yu Y B, Chen R P, Chen A X, Jin G R and Yang W 2021 Phys. Rev. A 103 043702
[4] Chen T, Kim J, Kuzyk M, Whitlow J, Phiri S, Bondurant B, Riesebos L, Brown K R and Kim J 2022 IEEE Transactions on Quantum Engineering 3
[5] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and Schwab K C 2010 Nature 463 72
[6] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[7] Zheng Q, Yao Y and Li Y 2016 Phys. Rev. A 93 013848
[8] Latune C L, Sinayskiy I and Petruccione F 2016 Phys. Rev. A 94 052115
[9] Sanavio C, Bernád J Z and Xuereb A 2020 Phys. Rev. A 102 013508
[10] Chen G, Zhang L, Zhang W H, Peng X X, Xu L, Liu Z D, Xu X Y, Tang J S, Sun Y N, He D Y, Xu J S, Zhou Z Q, Li C F and Guo G C 2018 Phys. Rev. Lett. 121 060506
[11] Sanz M, Las Heras U, García-Ripoll J J, Solano E and Di Candia R 2017 Phys. Rev. Lett. 118 070803
[12] Walter S, Nunnenkamp A and Bruder C 2014 Phys. Rev. Lett. 112 094102
[13] Lian J, Liu N, Liang J Q, Chen G and Jia S 2013 Phys. Rev. A 88 043820
[14] Flayac H, Minkov M and Savona V 2015 Phys. Rev. A 92 043812
[15] Hoff U B, Kollath-Bönig J, Neergaard-Nielsen J S and Andersen U L 2016 Phys. Rev. Lett. 117 143601
[16] Huang X, Zeuthen E, Vasilyev D V, He Q, Hammerer K and Polzik E S 2018 Phys. Rev. Lett. 121 103602
[17] Ghosh S, Carney D, Shawhan P and Taylor J M 2020 Phys. Rev. A 102 023525
[18] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett. 115 243603
[19] Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviére R, Schliesser A, Weig E M, Kotthaus J P and Kippenberg T J 2009 Nat. Phys. 5 909
[20] Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
[21] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
[22] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
[23] Cheng J, Liang X T, Zhang W Z and Duan X 2019 Opt. Commun. 430 385
[24] Zhang W Z, Liang X T, Cheng J and Zhou L 2021 Phys. Rev. A 103 053707
[25] Li W, Li C and Song H 2017 Phys. Rev. E 95 022204
[26] Li W, Piergentili P, Li J, Zippilli S, Natali R, Malossi N, Di Giuseppe G and Vitali D 2020 Phys. Rev. A 101 013802
[27] Li W, Es'haqi-Sani N, Zhang W Z and Vitali D 2021 Phys. Rev. A 103 043715
[28] Li W 2022 Phys. Rev. A 106 023512
[29] Huang P, Wang P, Zhou J, Wang Z, Ju C, Wang Z, Shen Y, Duan C and Du J 2013 Phys. Rev. Lett. 110 227202
[30] Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A 99 063811
[31] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
[32] Ma Y, Danilishin S L, Zhao C, Miao H, Korth W Z, Chen Y, Ward R L and Blair D G 2014 Phys. Rev. Lett. 113 151102
[33] Li X, Smetana J, Ubhi A S, Bentley J, Chen Y, Ma Y, Miao H and Martynov D 2021 Phys. Rev. D 103 122001
[34] Armata F, Latmiral L, Plato A D K and Kim M S 2017 Phys. Rev. A 96 043824
[35] Lassagne B, Garcia-Sanchez D, Aguasca A and Bachtold A 2008 Nano Lett. 8 3735
[36] Naik A K, Hanay M S, Hiebert W K, Feng X L and Roukes M L 2009 Nat. Nanotech. 4 445
[37] Pontin A, Lang J E, Chowdhury A, Vezio P, Marino F, Morana B, Serra E, Marin F and Monteiro T S 2018 Phys. Rev. Lett. 120 020503
[38] Toroš M and Monteiro T S 2020 Phys. Rev. Res. 2 023228
[39] Davuluri S, Li K and Li Y 2017 New J. Phys. 19 113004
[40] Li K, Davuluri S and Li Y 2018 Science China Physics, Mechanics Astronomy 61 90311
[41] Li K, Davuluri S and Li Y 2018 Chin. Phys. B 27 084203
[42] Davuluri S 2016 Phys. Rev. A 94 013808
[43] Li K, Davuluri S and Li Y 2018 Chin. Phys. B 27 084203
[44] Law C K 1995 Phys. Rev. A 51 2537
[45] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[46] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[47] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[48] Helstrom C 1968 IEEE Transactions on Information Theory 14 234
[49] Helstrom C W 1967 Information and Control 10 254
[50] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[51] Jiang Z 2014 Phys. Rev. A 89 032128
[52] Thompson J, Zwickl B, Jayich A, Marquardt F, Girvin S and Harris J 2008 Nature 452 72
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[5] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[6] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[7] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[8] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[9] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[10] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[11] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[12] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[13] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[14] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[15] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
No Suggested Reading articles found!