Abstract We study the quantum Fisher information (QFI) of the angular velocity of rotation in an optomechanical system. Based on the Gaussian measurements method, we derive the explicit form of a single-mode Gaussian QFI, which is valid for arbitrary angular velocity of rotation. The information about the angular velocity to be measured is contained in the optical covariance matrix, which can be experimentally determined via homodyne measurement. We find that QFI increases rapidly when driving the system close to the unstable boundary. This result can be attributed to the strong nonlinearity of the system at the unstable boundary. Our results indicate the possibility of using an optomechanical system for high precision detection of the angular velocity of rotation.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704205 and 12074206), the National Natural Science Foundation of Zhejiang Province (Grant No. LY22A040005), and K.C.Wong Magna Fund in Ningbo University.
Hao Li(李浩) and Jiong Cheng(程泂) Quantum estimation of rotational speed in optomechanics 2023 Chin. Phys. B 32 100602
[1] Pezzé L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys.90 035005 [2] Albarrán-Arriagada F, Alvarado Barrios G, Sanz M, Romero G, Lamata L, Retamal J C and Solano E 2018 Phys. Rev. A97 032320 [3] Zhou L K, Xu J H, Zhang W Z, Cheng J, Yin T S, Yu Y B, Chen R P, Chen A X, Jin G R and Yang W 2021 Phys. Rev. A103 043702 [4] Chen T, Kim J, Kuzyk M, Whitlow J, Phiri S, Bondurant B, Riesebos L, Brown K R and Kim J 2022 IEEE Transactions on Quantum Engineering3 [5] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and Schwab K C 2010 Nature463 72 [6] Giovannetti V, Lloyd S and Maccone L 2004 Science306 1330 [7] Zheng Q, Yao Y and Li Y 2016 Phys. Rev. A93 013848 [8] Latune C L, Sinayskiy I and Petruccione F 2016 Phys. Rev. A94 052115 [9] Sanavio C, Bernád J Z and Xuereb A 2020 Phys. Rev. A102 013508 [10] Chen G, Zhang L, Zhang W H, Peng X X, Xu L, Liu Z D, Xu X Y, Tang J S, Sun Y N, He D Y, Xu J S, Zhou Z Q, Li C F and Guo G C 2018 Phys. Rev. Lett.121 060506 [11] Sanz M, Las Heras U, García-Ripoll J J, Solano E and Di Candia R 2017 Phys. Rev. Lett.118 070803 [12] Walter S, Nunnenkamp A and Bruder C 2014 Phys. Rev. Lett.112 094102 [13] Lian J, Liu N, Liang J Q, Chen G and Jia S 2013 Phys. Rev. A88 043820 [14] Flayac H, Minkov M and Savona V 2015 Phys. Rev. A92 043812 [15] Hoff U B, Kollath-Bönig J, Neergaard-Nielsen J S and Andersen U L 2016 Phys. Rev. Lett.117 143601 [16] Huang X, Zeuthen E, Vasilyev D V, He Q, Hammerer K and Polzik E S 2018 Phys. Rev. Lett.121 103602 [17] Ghosh S, Carney D, Shawhan P and Taylor J M 2020 Phys. Rev. A102 023525 [18] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett.115 243603 [19] Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviére R, Schliesser A, Weig E M, Kotthaus J P and Kippenberg T J 2009 Nat. Phys.5 909 [20] Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep.6 23678 [21] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A93 063853 [22] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys.19 083022 [23] Cheng J, Liang X T, Zhang W Z and Duan X 2019 Opt. Commun.430 385 [24] Zhang W Z, Liang X T, Cheng J and Zhou L 2021 Phys. Rev. A103 053707 [25] Li W, Li C and Song H 2017 Phys. Rev. E95 022204 [26] Li W, Piergentili P, Li J, Zippilli S, Natali R, Malossi N, Di Giuseppe G and Vitali D 2020 Phys. Rev. A101 013802 [27] Li W, Es'haqi-Sani N, Zhang W Z and Vitali D 2021 Phys. Rev. A103 043715 [28] Li W 2022 Phys. Rev. A106 023512 [29] Huang P, Wang P, Zhou J, Wang Z, Ju C, Wang Z, Shen Y, Duan C and Du J 2013 Phys. Rev. Lett.110 227202 [30] Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A99 063811 [31] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys.19 083022 [32] Ma Y, Danilishin S L, Zhao C, Miao H, Korth W Z, Chen Y, Ward R L and Blair D G 2014 Phys. Rev. Lett.113 151102 [33] Li X, Smetana J, Ubhi A S, Bentley J, Chen Y, Ma Y, Miao H and Martynov D 2021 Phys. Rev. D103 122001 [34] Armata F, Latmiral L, Plato A D K and Kim M S 2017 Phys. Rev. A96 043824 [35] Lassagne B, Garcia-Sanchez D, Aguasca A and Bachtold A 2008 Nano Lett.8 3735 [36] Naik A K, Hanay M S, Hiebert W K, Feng X L and Roukes M L 2009 Nat. Nanotech.4 445 [37] Pontin A, Lang J E, Chowdhury A, Vezio P, Marino F, Morana B, Serra E, Marin F and Monteiro T S 2018 Phys. Rev. Lett.120 020503 [38] Toroš M and Monteiro T S 2020 Phys. Rev. Res.2 023228 [39] Davuluri S, Li K and Li Y 2017 New J. Phys.19 113004 [40] Li K, Davuluri S and Li Y 2018 Science China Physics, Mechanics Astronomy61 90311 [41] Li K, Davuluri S and Li Y 2018 Chin. Phys. B27 084203 [42] Davuluri S 2016 Phys. Rev. A94 013808 [43] Li K, Davuluri S and Li Y 2018 Chin. Phys. B27 084203 [44] Law C K 1995 Phys. Rev. A51 2537 [45] Giovannetti V and Vitali D 2001 Phys. Rev. A63 023812 [46] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A77 033804 [47] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A78 032316 [48] Helstrom C 1968 IEEE Transactions on Information Theory14 234 [49] Helstrom C W 1967 Information and Control10 254 [50] Braunstein S L and Caves C M 1994 Phys. Rev. Lett.72 3439 [51] Jiang Z 2014 Phys. Rev. A89 032128 [52] Thompson J, Zwickl B, Jayich A, Marquardt F, Girvin S and Harris J 2008 Nature452 72
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.