Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057802    DOI: 10.1088/1674-1056/abe9a6

High-efficiency reflection phase tunable metasurface at near-infrared frequencies

Ce Li(李策)1,2, Wei Zhu(朱维)3, Shuo Du(杜硕)1,2, Junjie Li(李俊杰)1,2,4, and Changzhi Gu(顾长志)1,2,5,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an 710129, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  The realization of active modulation of reflection phase based on metasurfaces is of great significance for flexible control of electromagnetic wavefront, which makes metasurfaces have practical application values in polarization conversion, beam steering, metalens, etc. In this paper, a reflection phase tunable gap-surface plasmon (GSP) metasurface based on phase change materials Ge2Sb2Te5 (GST) is designed and experimentally demonstrated. By virtue of the characteristics of large permittivities difference before and after GST phase transition and the existence of stable intermediate states, the continuous modulation of near-infrared reflection phase larger than 200° has been realized. At the same time, through the reasonable design of the structure sizes, the reflection has been maintained at about 0.4 and basically does not change with the GST phase transition, which improved the working efficiency of the metasurface significantly. In addition, the coupled-mode theory (CMT) is introduced to make a full analysis of the modulation mechanism of the reflection phase, which proves that the phase transition of GST can induce the transition of metasurface working state from overcoupling mode to critical coupling mode. The improvement of the metasurface working efficiency has practical values for wavefront modulation.
Keywords:  active metasurface      phase change materials      phase modulation  
Received:  14 January 2021      Revised:  22 February 2021      Accepted manuscript online:  25 February 2021
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0200400, 2016YFA0200800, and 2016YFA0300601), the National Natural Science Foundation of China (Grant Nos. 61888102,11674387, 11974386, and 61905274), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant Nos. XDB33000000, XDB28000000, and QYZDJ-SSW-SLH042).
Corresponding Authors:  Changzhi Gu     E-mail:

Cite this article: 

Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志) High-efficiency reflection phase tunable metasurface at near-infrared frequencies 2021 Chin. Phys. B 30 057802

[1] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[2] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401
[3] Su V C, Chu C H, Sun G and Tsai D 2018 Opt. Express 26 13148
[4] Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T and Giessen H 2017 Light Sci. Appl. 6 e17016
[5] Huang L, Chen X, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T and Zhang S 2012 Nano Lett. 12 5750
[6] Pors A and Bozhevolnyi S I 2013 Opt. Express 21 27438
[7] Ni X, Ishii S, Kildishev A V and Shalaev V 2013 Light Sci. Appl. 2 e72
[8] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[9] Pors A, Nielsen M G, Eriksen R L and Bozhevolnyi S 2013 Nano Lett. 13 829
[10] Wang S, Wu P C, Su V C, Lai Y, Chu C, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S and Tsai D 2017 Nat. Commun. 8 187
[11] Chen W T, Yang K Y, Wang C M, Huang Y, Sun G, Chiang I, Liao C, Hsu W, Lin X, Sun S, Zhou L, Liu A and Tsai D 2014 Nano Lett. 14 225
[12] Deng Z L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang G, Zhao R, Wang X, Cao Y, Cheng X, Li G and Li X 2018 Nano Lett. 18 2885
[13] Huang Y W, Chen W T, Tsai W Y, Wu P, Wang C, Sun G and Tsai D 2015 Nano Lett. 15 3122
[14] Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308
[15] Ding F, Yang Y, Deshpande R A and Bozhevolnyi S I 2018 Nanophotonics 7 1129
[16] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S and Zhou L 2015 Phys. Rev. Lett. 115 235503
[17] Berry M V 1987 J. Mod. Opt. 34 1401
[18] Park J, Kang J H, Kim S J, Liu X and Brongersma M L 2017 Nano Lett. 17 407
[19] Kafaie Shirmanesh G, Sokhoyan R, Pala R A and Atwater H 2018 Nano Lett. 18 2957
[20] Huang Y W, Lee H W, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D and Atwater H 2016 Nano Lett. 16 5319
[21] Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A and Atwater H A 2017 Nano Lett. 17 3027
[22] Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y and Zhou L 2015 Phys. Rev. X 5 041027
[23] Pitchappa P, Kumar A, Prakash S, Jani H, Venkatesan T and Singh R 2019 Adv. Mater. 31 e1808157
[24] Qu Y, Li Q, Du K, Cai L, Lu J and Qiu M 2017 Laser Photonics Rev. 11 1700091
[25] Fu Q, Zhang F, Fan Y, Dong J, Cai W, Zhu W, Chen S and Yang R 2017 Appl. Phys. Lett. 110 221905
[26] Wonjoo S, Zheng W and Shanhui F 2004 IEEE J. Quantum Electron. 40 1511
[27] Zhang S, Fan W J, Malloy K J, Brueck S, Panoiu N and Osgood R M 2006 J. Opt. Soc. Am. B-Opt. Phys. 23 434
[28] Linden S, Enkrich C, Wegener M, Zhou J, Koschny T and Soukoulis C 2004 Science 306 1351
[29] Aspnes D E 1982 Am. J. Phys. 50 704
[30] Li C, Zhu W, Liu Z, Yan S, Pan R, Du S, Li J and Gu C 2018 Appl. Phys. Lett. 113 231103
[31] Fan S H, Suh W and Joannopoulos J D 2003 J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 20 569
[32] Celanovic I, Perreault D and Kassakian J 2005 Phys. Rev. B 72 075127
[33] Hao J M, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104
[34] Jung J, Sondergaard T and Bozhevolnyi S I 2009 Phys. Rev. B 79 035401
[1] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[2] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[3] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[4] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[5] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[6] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[7] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[8] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[9] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[10] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[11] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[12] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[13] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[14] Electromagnetically induced grating in a thermal N-type four-level atomic system
Ya-Bin Dong(董雅宾), Jun-Yan Li(李俊燕), Zhi-Ying Zhou(周志英). Chin. Phys. B, 2017, 26(1): 014202.
[15] Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals
Liangyu Shi, Abhishek Kumar Srivastava, Vladimir G Chigrinov, Hoi-Sing Kwok. Chin. Phys. B, 2016, 25(9): 094212.
No Suggested Reading articles found!