Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 106102    DOI: 10.1088/1674-1056/acd36b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr)

Yong Nie(聂勇)1,2, Zheng Chen(陈正)1, Ming Mei(梅明)1,2, Yuan-Yuan Wang(王园园)1,2, Jia-Ting Wu(吴嘉挺)1,2, Jia-Liang Jiang(蒋佳良)1,2, Wen-Hai Song(宋文海)3, Wei Ning(宁伟)1,†, Zhao-Sheng Wang(王钊胜)1, Xiang-De Zhu(朱相德)1,‡, and Ming-Liang Tian(田明亮)1,4,§
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science(HFIPS), Chinese Academy of Sciences, Hefei 230031, China;
2 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
4 School of Physics, Anhui University, Hefei 230601, China
Abstract  The compounds composed of transition metal cations and pnictide anions provide a rich platform for studying novel physical phenomena. Here we report on the observation of a phase transition at $\sim 70$ K and 145 K in layered compound EuCu$_{4}$As$_{2}$ and SrCu$_{4}$As$_{2}$, respectively. from both the transport and heat capacity. The thermal expansion measurements show that the variation of the lattice parameters ($\Delta L_{b}/L_{ab}$) around $T_{\rm P}$ is much less than that for a typical crystalline phase transition. Our experimental results reveal that the transition in EuCu$_{4}$As$_{2}$ and SrCu$_{4}$As$_{2}$ should be driven by subtle structural-distortion.
Keywords:  thermal expansion      specific heat      lattice-distortion  
Received:  05 April 2023      Revised:  05 April 2023      Accepted manuscript online:  09 May 2023
PACS:  61.66.-f (Structure of specific crystalline solids)  
  65.40.Ba (Heat capacity)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1600201), the National Natural Science Foundation of China (Grant Nos. U19A2093, U2032214, U2032163, U1732274, 11904002, and 11874359), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (CAS) (Grant No. 2019HSC-CIP 001), the Youth Innovation Promotion Association of CAS (Grant No. 2021117), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA15), the Director Fund from the Hefei Institutes of Physical Science (HFIPS) (Grant No. YZJJQY202304), the Director Fund from the the Chinese Academy of Sciences and Hefei Institutes of Physical Science (CASHIPS), China (Grant No. E26MMG71131), and the High Magnetic Field Laboratory of Anhui Province, China.
Corresponding Authors:  Wei Ning, Xiang-De Zhu, Ming-Liang Tian     E-mail:  ningwei@hmfl.ac.cn;xdzhu@hmfl.ac.cn;mltian@hmfl.ac.cn

Cite this article: 

Yong Nie(聂勇), Zheng Chen(陈正), Ming Mei(梅明), Yuan-Yuan Wang(王园园), Jia-Ting Wu(吴嘉挺), Jia-Liang Jiang(蒋佳良), Wen-Hai Song(宋文海), Wei Ning(宁伟), Zhao-Sheng Wang(王钊胜), Xiang-De Zhu(朱相德), and Ming-Liang Tian(田明亮) Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr) 2023 Chin. Phys. B 32 106102

[1] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[2] Sefat A S, McGuire M A, Jin R, Sales B C, Mandrus D, Ronning F, Bauer E D and Mozharivskyj Y 2009 Phys. Rev. B 79 094508
[3] Tan X, Tener Z P and Shatruk M 2018 Accounts of Chemical Research 51 230
[4] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phys. Rev. B 78 020503
[5] Jiang W B, Guo C Y, Weng Z F, Wang Y F, Chen Y H, Chen Y, Pang G M, Shang T, Lu X and Yuan H Q 2014 J. Phys.: Condens. Matter 27 022202
[6] Kudo K, Nishikubo Y and Nohara M 2010 J. Phys. Soc. Jpn. 79 123710
[7] Lou X, Xu H C, Wen C H P, Yu T L, Wei W Z, Yao Q, Song Y H, Emmanouilidou E, Shen B, Ni N, Dudin P, Huang Y B, Denlinger J, Sutarto R, Li W, Peng R and Feng D L 2020 Phys. Rev. B 101 075123
[8] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[9] Yi M, Lu D H, Analytis J G, Chu J H, Mo S K, He R H, Hashimoto M, Moore R G, Mazin I I, Singh D J, Hussain Z, Fisher I R and Shen Z X 2009 Phys. Rev. B 80 174510
[10] Yang L X, Xie B P, Zhang Y, He C, Ge Q Q, Wang X F, Chen X H, Arita M, Jiang J, Shimada K, Taniguchi M, Vobornik I, Rossi G, Hu J P, Lu D H, Shen Z X, Lu Z Y and Feng D L 2010 Phys. Rev. B 82 104519
[11] Zhou B, Xu M, Zhang Y, Xu G, He C, Yang L X, Chen F, Xie B P, Cui X Y, Arita M, Shimada K, Namatame H, Taniguchi M, Dai X and Feng D L 2011 Phys. Rev. B 83 035110
[12] Shen B, Emmanouilidou E, Deng X, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130
[13] Shen B, Hu C, Cao H, Gui X, Emmanouilidou E, Xie W and Ni N 2020 Phys. Rev. Mater. 4 064419
[14] Li L, Yang Z, Su Q, Yang J, Chen B, Du J, Wu C, Wang H and Fang M 2022 J. Alloys Compd. 916 165460
[15] Luo X, Sun Y P, Lu W J, Zhu X B, Yang Z R and Song W H 2010 Appl. Phys. Lett. 96 062506
[16] Kuchler R, Worl A, Gegenwart P, Berben M, Bryant B and Wiedmann S 2017 Rev. Sci. Instrum. 88 083903
[17] Dünner J and Mewis A 1997 Z. Anorg. Allg. Chem. 623 608
[18] Tovar M, Rao D, Barnett J, Oseroff S B, Thompson J D, Cheong S W, Fisk Z, Vier D C and Schultz S 1989 Phys. Rev. B 39 2661
[19] Miyazawa M 2005 J. Phys. Soc. Jpn. 75 014702
[20] Bud'ko S L, Xiang L, Hu C, Shen B, Ni N and Canfield P C 2020 Phys. Rev. B 101 195112
[21] Zhu Q, Li L, Yang Z, Lou Z, Du J, Yang J, Chen B, Wang H and Fang M 2020 Sci. China: Phys., Mech. Astron. 64 227011
[22] Sasmal S, Saini V, Ramakrishnan S, Dwari G, Maity B B, Bao J K, Mondal R, Tripathi V, van Smaalen S, Singh B and Thamizhavel A 2022 Phys. Rev. Res. 4 L012011
[23] Fernández-Díaz M T, Martínez J L, Alonso J M and Herrero E 1999 Phys. Rev. B 59 1277
[24] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961
[25] Tachibana M, Taira N, Kawaji H and Takayama-Muromachi E 2010 Phys. Rev. B 82 054108
[26] Yamaura J and Hiroi Z 2002 J. Phys. Soc. Jpn. 71 2598
[27] Hiroi Z, Yamaura J I, Muraoka Y and Hanawa M 2002 J. Phys. Soc. Jpn. 71 1634
[28] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K and Boothroyd A T 2013 Nat. Mater. 12 1024
[1] Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations
Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫). Chin. Phys. B, 2023, 32(5): 056501.
[2] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[7] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[8] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[9] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[10] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[11] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[12] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[13] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[14] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[15] Laser scattering, transmittance and low thermal expansion behaviors in Y2-x(ZnLi)xMo3O12 by forming regular grains
Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Bao-He Yuan(袁保合), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2019, 28(9): 096501.
No Suggested Reading articles found!