CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ab initio study of chemical effect on structural properties of Ti-Al melts |
Yun Feng(冯运), Yan Feng(冯艳), and Hai-Long Peng(彭海龙)† |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract We study chemical effect on the structural properties of Ti-Al melts, with the Al concentration systematically changed, via ab initio molecular dynamics simulations. By calculating the partial coordination numbers, we find a preferred connection between the nearest neighbors for Al-Ti pairs. This induces an excess Ti coordination in the cluster characterized by local five-fold symmetry in Voronoi tessellation. Structural entropy measured from the diversity of Voronoi polyhedrons shows an intriguing non-monotonic tendency with concentration: it first decreases to a minimum value at $\mathrm{Ti}_{\mathrm{40}}\mathrm{Al}_{\mathrm{60}}$, and then increases beyond this concentration. This implies a more ordered local structure induced by the chemical interaction at the intermediate compositions. The spatial correlation among the crystalline-like or the icosahedral-like clusters also exhibits the highest intensity for Al-Ti pairs, verifying the important role played by the chemical interaction in the local structure connectivity.
|
Received: 25 March 2023
Revised: 25 April 2023
Accepted manuscript online: 05 May 2023
|
PACS:
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
61.25.Mv
|
(Liquid metals and alloys)
|
|
Fund: Project supported by the Open Research Fund of Songshan Lake Materials Laboratory, China (Grant No. 2022SLABFN14) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30833). |
Corresponding Authors:
Hai-Long Peng
E-mail: hailong.peng@csu.edu.cn
|
Cite this article:
Yun Feng(冯运), Yan Feng(冯艳), and Hai-Long Peng(彭海龙) Ab initio study of chemical effect on structural properties of Ti-Al melts 2023 Chin. Phys. B 32 106101
|
[1] Appel F, Brossmann U, Christoph, Eggert S, Janschek P, Lorenz U, Mullauer J, Oehring M and Paul J D 2000 Adv. Eng. Mater. 2 699 [2] Aguilar J, Schievenbusch A and Kattlitz O 2011 Intermetallics 19 757 [3] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R. 44 45 [4] Inoue A 2000 Acta Mater. 48 279 [5] Zhang J Y, Zhou Z Q, Zhang Z B, Park M H, Yu Q, Li Z, Ma J, Wang A D, Huang H G, Song M, Guo B S, Wang Q and Yang Y 2022 Mater. Futures 1 012001 [6] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z and Bai H Y 2022 Nat. Mater. 21 1240 [7] Wang Q, Shang Y H and Yang Y 2023 Mater. Futures 2 017501 [8] Frank F C 1952 Proc. R. Soc. Lond. Ser. A 215 43 [9] Schenk T, Holland-Moritz D, Simonet V, Bellissent R and Herlach D M 2002 Phys. Rev. Lett. 89 075507 [10] Lee G W, Gangopadhyay A K, Kelton K F, Hyers R W, Rathz T J, Rogers J R and Robinson D S 2004 Appl. Phys. Lett. 93 037802 [11] Kelton K F, Lee G, Gangopadhyay A K, Hyers R, Rathz T J and Rogers J R 2003 Phys. Rev. Lett. 90 195504 [12] Lee G, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I and Kelton K F 2008 Phys. Rev. B 77 184102 [13] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379 [14] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901 [15] Li M, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201 [16] Xie Z C, Gao T H, Guo X T, Qin X M and Xie Q 2014 Comput. Mater. Sci. 95 502 [17] Xie Z C, Gao T H, Guo X T, Qin X M and Xie Q 2014 J. Non-Cryst. Solids 394-395 16 [18] Tahiri M, Hassani A, Sbiaai K and Hasnaoui A 2018 Comput. Condensed Matter 14 74 [19] Liu Z, Li L, Gao T, Xie Q, Chen Q, Liang Y, Tian Z and Wang B 2021 Phys. Status Solidi B 258 2100083 [20] Peng H L, Voigtmann T, Kolland G, Kobatake H and Brillo J 2015 Phys. Rev. B 92 184201 [21] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T and Voigtmann T 2019 Phys. Rev. B 100 104202 [22] Wen T, Zhang L, Wang H, Weinan E and Srolovitz D J 2022 Mater. Futures 1 022601 [23] Zhai B and Wang H P 2023 Comput. Mater. Sci. 216 111843 [24] Das S K, Horbach J, Koza M M, Mavila Chathoth S and Meyer A 2005 Appl. Phys. Lett. 86 011918 [25] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G and Meyer A 2015 Phys. Rev. B 91 214203 [26] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501 [27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758 [30] Wessing J and Brillo J 2017 Metall. Mater. Trans. A 48 868 [31] Pauling L 1947 J. Am. Chem. Soc. 69 542 [32] Pan S P, Qin J Y, Wang W M and Gu T K 2011 Phys. Rev. B 84 092201 [33] Liu Q and Guan P F 2018 Acta Phys. Sin. 67 178101 (in Chinese) [34] Li M Z, et al. 2017 Chin. Phys. B 26 016104 [35] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503 [36] Peng H L, Li M Z and Wang W H 2013 Appl. Phys. Lett. 102 131908 [37] Xu T T, Li J Y, X R, Qin J Y, Ruan Y and Li H 2022 J. Phase Equilib. Diffus. 43 585 [38] Witusiewicz V T, Bondar A A, Hecht U, Rex S and Velikanova T Y 2008 J. Alloys Compd. 465 64 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|