Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098102    DOI: 10.1088/1674-1056/accff4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate

Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓)
University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene, and thus essential for the graphene-based devices. Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111) substrate. We first intercalate hafnium atoms beneath the epitaxial graphene. The intercalation of the hafnium atoms leads to the variation of the graphene moiré superstructure periodicity, which is characterized by low-energy electron diffraction (LEED) and low-temperature scanning tunneling microscopy (LT-STM). Subsequently, we introduce oxygen into the interface, resulting in oxidization of the intercalated hafnium. STM and Raman's characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate, while the graphene maintains its high quality. Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate, providing a platform for applications of large-scale, high-quality graphene for electronic devices.
Keywords:  epitaxial graphene      hafnium      intercalation      oxidization  
Received:  03 April 2023      Revised:  19 April 2023      Accepted manuscript online:  25 April 2023
PACS:  81.05.ue (Graphene)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 61925111), the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YSBR-003), the Fundamental Research Funds for the Central Universities, and the CAS Key Laboratory of Vacuum Physics.
Corresponding Authors:  Xiao Lin     E-mail:  xlin@ucas.ac.cn

Cite this article: 

Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓) Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate 2023 Chin. Phys. B 32 098102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T and Geim A K 2011 Nano Lett. 11 2396
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[5] Meng L, Wu R, Zhang L, Li L, Du S, Wang Y and Gao H J 2012 J. Phys. Condens. Matter 24 314214
[6] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[7] Dedkov Y S, Fonin M, Rüdiger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602
[8] Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411
[9] Chen Y, Gong X L and Gai J G 2016 Adv. Sci. 3 1500343
[10] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[11] Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175
[12] Zhang H, Fu Q, Cui Y, Tan D and Bao X 2009 J. Phys. Chem. C 113 8296
[13] Guo H, Wang X, Lu H, Bao L, Peng H, Qian K, Ma J, Li G, Huang L, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2019 2$D Mater. 6 045044
[14] Enderlein C, Kim Y S, Bostwick A, Rotenberg E and Horn K 2010 New J. Phys. 12 033014
[15] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[16] Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
[17] Meng L, Wu R, Zhou H, Li G, Zhang Y, Li L, Wang Y and Gao H J 2012 Appl. Phys. Lett. 100 083101
[18] Guo H, Zhang R, Li H, Wang X, Lu H, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S, Pantelides S T and Gao H J 2020 Nano Lett. 20 2674
[19] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[20] Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Nat. Mater. 11 764
[21] Wang X, Guo H, Lu J, Lu H, Lin X, Shen C, Bao L, Du S and Gao H J 2021 Chin. Phys. B 30 048102
[22] Wang X Y, Guo H, Shi J A, Biao Y, Li Y, Han G Y, Zhang S, Qian K, Zhou W, Lin X, Du S X, Shen C M, Lu H L and Gao H J 2022 Rare Metals 41 304
[23] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
[24] Larciprete R, Lacovig P, Orlando F, Dalmiglio M, Omiciuolo L, Baraldi A and Lizzit S 2015 Nanoscale 7 12650
[25] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[26] Feng Y, Trainer D J and Chen K 2017 J. Phys. D 50 155101
[27] Robertson J 2006 Rep. Prog. Phys. 69 327
[28] Li L, Wang Y, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106
[29] Peng H, Jin X, Song Y and Du S 2022 Chin. Phys. B 31 106801
[30] Brako R, Šokčević D, Lazić P and Atodiresei N 2010 New J. Phys. 12 113016
[31] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[32] Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A C and Gao H J 2015 J. Am. Chem. Soc. 137 7099
[1] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[2] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[3] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[4] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[5] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[6] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[9] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[10] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[11] Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation
Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(7): 078103.
[12] Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films
Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2018, 27(1): 018807.
[13] Stability and mechanical properties of various Hf-H phases:A density-functional theory study
Wei Xiao(肖伟), Lu Sun(孙璐), Shu-Hui Huang(黄树晖), Jian-Wei Wang(王建伟), Lei Cheng(程磊), Li-Gen Wang(王立根). Chin. Phys. B, 2017, 26(10): 106103.
[14] A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide
Jiao Huang(黄郊), Li-Wei Guo(郭丽伟), Wei Lu(芦伟), Yong-Hui Zhang(张永晖), Zhe Shi(史哲), Yu-Ping Jia(贾玉萍), Zhi-Lin Li(李治林), Jun-Wei Yang(杨军伟), Hong-Xiang Chen(陈洪祥), Zeng-Xia Mei(梅增霞), Xiao-Long Chen(陈小龙). Chin. Phys. B, 2016, 25(6): 067205.
[15] High temperature characteristics of bilayer epitaxial graphene field-effect transistors on SiC Substrate
Ze-Zhao He(何泽召), Ke-Wu Yang(杨克武), Cui Yu(蔚翠), Qing-Bin Liu(刘庆彬), Jing-Jing Wang(王晶晶), Jia Li(李佳), Wei-Li Lu(芦伟立), Zhi-Hong Feng(冯志红), Shu-Jun Cai(蔡树军). Chin. Phys. B, 2016, 25(6): 067206.
No Suggested Reading articles found!