INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate |
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓)† |
University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene, and thus essential for the graphene-based devices. Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111) substrate. We first intercalate hafnium atoms beneath the epitaxial graphene. The intercalation of the hafnium atoms leads to the variation of the graphene moiré superstructure periodicity, which is characterized by low-energy electron diffraction (LEED) and low-temperature scanning tunneling microscopy (LT-STM). Subsequently, we introduce oxygen into the interface, resulting in oxidization of the intercalated hafnium. STM and Raman's characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate, while the graphene maintains its high quality. Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate, providing a platform for applications of large-scale, high-quality graphene for electronic devices.
|
Received: 03 April 2023
Revised: 19 April 2023
Accepted manuscript online: 25 April 2023
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 61925111), the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YSBR-003), the Fundamental Research Funds for the Central Universities, and the CAS Key Laboratory of Vacuum Physics. |
Corresponding Authors:
Xiao Lin
E-mail: xlin@ucas.ac.cn
|
Cite this article:
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓) Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate 2023 Chin. Phys. B 32 098102
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T and Geim A K 2011 Nano Lett. 11 2396 [3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [4] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777 [5] Meng L, Wu R, Zhang L, Li L, Du S, Wang Y and Gao H J 2012 J. Phys. Condens. Matter 24 314214 [6] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512 [7] Dedkov Y S, Fonin M, Rüdiger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602 [8] Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411 [9] Chen Y, Gong X L and Gai J G 2016 Adv. Sci. 3 1500343 [10] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359 [11] Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175 [12] Zhang H, Fu Q, Cui Y, Tan D and Bao X 2009 J. Phys. Chem. C 113 8296 [13] Guo H, Wang X, Lu H, Bao L, Peng H, Qian K, Ma J, Li G, Huang L, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2019 2$D Mater. 6 045044 [14] Enderlein C, Kim Y S, Bostwick A, Rotenberg E and Horn K 2010 New J. Phys. 12 033014 [15] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601 [16] Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101 [17] Meng L, Wu R, Zhou H, Li G, Zhang Y, Li L, Wang Y and Gao H J 2012 Appl. Phys. Lett. 100 083101 [18] Guo H, Zhang R, Li H, Wang X, Lu H, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S, Pantelides S T and Gao H J 2020 Nano Lett. 20 2674 [19] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947 [20] Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Nat. Mater. 11 764 [21] Wang X, Guo H, Lu J, Lu H, Lin X, Shen C, Bao L, Du S and Gao H J 2021 Chin. Phys. B 30 048102 [22] Wang X Y, Guo H, Shi J A, Biao Y, Li Y, Han G Y, Zhang S, Qian K, Zhou W, Lin X, Du S X, Shen C M, Lu H L and Gao H J 2022 Rare Metals 41 304 [23] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650 [24] Larciprete R, Lacovig P, Orlando F, Dalmiglio M, Omiciuolo L, Baraldi A and Lizzit S 2015 Nanoscale 7 12650 [25] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571 [26] Feng Y, Trainer D J and Chen K 2017 J. Phys. D 50 155101 [27] Robertson J 2006 Rep. Prog. Phys. 69 327 [28] Li L, Wang Y, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106 [29] Peng H, Jin X, Song Y and Du S 2022 Chin. Phys. B 31 106801 [30] Brako R, Šokčević D, Lazić P and Atodiresei N 2010 New J. Phys. 12 113016 [31] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978 [32] Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A C and Gao H J 2015 J. Am. Chem. Soc. 137 7099 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|