Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067205    DOI: 10.1088/1674-1056/25/6/067205
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide

Jiao Huang(黄郊)1, Li-Wei Guo(郭丽伟)1, Wei Lu(芦伟)1, Yong-Hui Zhang(张永晖)2, Zhe Shi(史哲)3, Yu-Ping Jia(贾玉萍)1, Zhi-Lin Li(李治林)1, Jun-Wei Yang(杨军伟)1, Hong-Xiang Chen(陈洪祥)1, Zeng-Xia Mei(梅增霞)2, Xiao-Long Chen(陈小龙)1
1 Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory for Renewable Energy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy. Here, we report a graphene/silicon carbide (SiC)-based self-powered ultraviolet photodetector that exhibits a current responsivity of 7.4 mA/W with a response frequency of over a megahertz under 325-nm laser irradiation. The built-in photovoltage of the photodetector is about four orders of magnitude higher than previously reported results for similar devices. These favorable properties are ascribed to the ingenious device design using the combined advantages of graphene and SiC, two terminal electrodes, and asymmetric light irradiation on one of the electrodes. Importantly, the photon energy is larger than the band gap of SiC. This self-powered photodetector is compatible with modern semiconductor technology and shows potential for applications in ultraviolet imaging and graphene-based integrated circuits.

Keywords:  epitaxial graphene      ultraviolet photodetector      SiC      self-powered  
Received:  25 February 2016      Revised:  30 March 2016      Accepted manuscript online: 
PACS:  72.80.Cw (Elemental semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.ue (Graphene)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CB932700 and 2013CBA01603) and the National Natural Science Foundation of China (Grant Nos. 51472265 and 51272279).

Corresponding Authors:  Li-Wei Guo, Xiao-Long Chen     E-mail:  lwguo@iphy.ac.cn;xlchen@iphy.ac.cn

Cite this article: 

Jiao Huang(黄郊), Li-Wei Guo(郭丽伟), Wei Lu(芦伟), Yong-Hui Zhang(张永晖), Zhe Shi(史哲), Yu-Ping Jia(贾玉萍), Zhi-Lin Li(李治林), Jun-Wei Yang(杨军伟), Hong-Xiang Chen(陈洪祥), Zeng-Xia Mei(梅增霞), Xiao-Long Chen(陈小龙) A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide 2016 Chin. Phys. B 25 067205

[1] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[2] Mueller T, Xia F N and Avouris P 2010 Nat. Photon. 4 297
[3] Avouris P 2010 Nano Lett. 10 4285
[4] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S and Englund D 2013 Nat. Photon. 7 883
[5] Liu J, Niu L, Zheng Z and Yan F 2014 Adv. Mater. 26 5239
[6] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photon. 7 892
[7] Sun D, Aivazian G, Jones A M, Ross J S, Yao W, Cobden D and Xu X 2012 Nat. Nanotechnol. 7 114
[8] Urich A, Unterrainer K and Mueller T 2011 Nano Lett. 11 2804
[9] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[10] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[11] Yan K, Wu D, Peng H, Jin L, Fu Q, Bao X and Liu Z 2012 Nat. Commun. 3 1280
[12] Wu D, Yan K, Zhou Y, Wang H, Lin L, Peng H and Liu Z 2013 J. Am. Chem. Soc. 135 10926
[13] Liu N, Tian H, Schwartz G, Tok J B H, Ren T L and Bao Z 2014 Nano Lett. 14 3702
[14] Lee E J, Balasubramanian K, Weitz R T, Burghard M and Kern K 2008 Nat. Nanotechnol. 3 486
[15] Xu X, Gabor N M, Alden J S, van der Zande A M and McEuen P L 2010 Nano Lett. 10 562
[16] Sun R, Zhang Y, Li K, Hui C, He K, Ma X and Liu F 2013 Appl. Phys. Lett. 103 013106
[17] Liu F and S. Kar 2014 ACS Nano 8 10270
[18] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
[19] Wang X, Cheng Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888
[20] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[21] Gao N and Fang X 2015 Chem. Rev. 115 8294
[22] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 9 493
[23] Tahtamouni T M Al, Lin J Y and Jiang H X 2012 Appl. Phys. Lett. 101 192106
[24] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105
[25] Zhang Y, Hui C, Sun R, Li K, He K, Ma X and Liu F 2014 Nanotechnology 25 135301
[26] Kusdemir E, Özkendir D, Firat V and Çelebi C J 2015 J. Phys. D: Appl. Phys. 48 095104
[27] Taflove A and Brodwin M E 1975 IEEE Trans. Microw. Theory Tech. 23 623
[28] Davydov S Y 2007 Semiconductors 41 696
[29] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van de Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[30] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[4] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!