Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098101    DOI: 10.1088/1674-1056/aca6d4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification

Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  Silicon carbide (SiC) is a high-performance structural ceramic material with excellent comprehensive properties, and is unmatched by metals and other structural materials. In this paper, raw SiC powder with an average grain size of 5 upmu m was sintered by an isothermal-compression process at 5.0 GPa and 1500 ℃; the maximum hardness of the sintered samples was 31.3 GPa. Subsequently, scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500 ℃ and 0-16.0 GPa, respectively. Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy. Further, high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression. This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.
Keywords:  high pressure and high temperature      silicon carbide      stress analysis      defect  
Received:  19 August 2022      Revised:  07 November 2022      Accepted manuscript online:  29 November 2022
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074273). High-pressure synchrotron radiation XRD experiments were carried out at the 4W2 beamline of the Beijing Synchrotron Radiation Facility (BSRF).
Corresponding Authors:  Fang Peng     E-mail:  pengfang@scu.edu.cn

Cite this article: 

Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君) High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification 2023 Chin. Phys. B 32 098101

[1] Guo X Z, Yang H, Zhang L J and Zhu X Y 2010 Ceram. Int. 36 161
[2] Tanaka H 2002 J. Ceram. Soc. Jpn. 110 877
[3] Casady J B and Johnson R W 1996 Solid State Electron. 39 1409
[4] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103
[5] Rahman A, Singh A, Harimkar S P and Singh R P 2014 Ceram. Int. 40 12081
[6] Feng D, Ren Q X, Ru H Q, Wang W, Jiang Y, Ren S Y and Zhang C P 2019 Ceram. Int. 45 23984
[7] Barick P, Chakravarty D, Saha B P, Mitra R and Joshi S V 2016 Ceram. Int. 42 3836
[8] Zhao Y C and Wang M Z 2007 Chin. Phys. Lett. 24 2412
[9] Li Y D, Cheng Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C and Chen L C 2020 Chin. Phys. B 29 078101
[10] Sun R X, Wei X D, Hu W T, Ying P, Wu Y J, Wang L Y, Chen S, Zhang X, Ma M D, Yu D L, Wang L, Gao G Y, Xu B and Tian Y J 2022 Small 18 2201212
[11] Matovic B, Zivic F, Mitrovic S, Prsic D, Maksimovic V, Volkov-Husovic T, Kumar R and Daneu N 2016 Mater. Lett. 164 68
[12] Guan S X, Peng F, Liang H, Fan C, Tan L J, Wang Z W, Zhang Y F, Zhang J W, Yu H and He D W 2018 J. Appl. Phys. 124 215902
[13] Xiang X J, Song G Z, Zhou X F, Liang H, Xu Y, Qin S J, Wang J P, Hong F, Dai J H, Zhou B W, Liang W J, Yin Y Y, Zhao Y S, Peng F, Yu X H and Wang S M 2020 Chin. Phys. B 29 088202
[14] Matović B, Bučevac D, Urbanović V, Stanković N, Daneu N, Volkov-Husović T and Babic B 2016 J. Eur. Ceram. Soc. 36 3005
[15] Bobrovnitchii G S, Osipov O S and Filgueira M 2003 Int. J. Refract. Met. H 21 251
[16] Xiong Z B, He D X, Peng F, Guan S X, Tan L J, Yu H, Xiang X J and Liang H 2020 Int. J. Refract. Met. H. 92 105311
[17] Xie H, Deng F M, Yang X F and Han S L 2020 Ceram. Int. 46 1631
[18] Deng F M, Yang X F, Deng W L, Zhou L L, Wang H and Zhang Z W 2019 Diam. Relat. Mater. 96 25
[19] Daouadji A, Hicher P Y and Rahma A 2001 Eur. J. Mech. A-Solid 20 113
[20] Su Y Z, Wang J P, Li X, Tang Q Q, Yang J, Lei L, Tian Y, Wang Z W and He D W 2021 Ceram. Int. 47 21077
[21] Gruzdeva E N, Kardasevich V S, Suranov A V, Nesterenko T N and Rotner Y M 1985 Sov. Powder Metall. Met. Ceram. 24 603
[22] Li R R, Zhang Y F, Geng D C, Zhang G W, Watanabe H, Han W T and Wan F R 2019 Acta Phys. Sin. 68 216101 (in Chinese)
[23] Sun J F, Li X P, Liang B Y, Zhao Y C and Wang M Z 2009 Chin. Phys. Lett. 26 078102
[24] Britun V F, Oleynik G S and Semenenko N P 1992 J. Mater. Sci. 27 4472
[25] Casanova C A M, Balzaretti N M, Voronin G and da Jornada J A H 1999 Diam. Relat. Mater. 8 1451
[26] Moller H J and Welsch G 1985 J. Am. Ceram. Soc. 68 320
[27] Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876
[28] Lu J R, Kou Z L, Liu T, Yan X Z, Liu F M, Ding W, Zhang Q, Zhang L L, Liu J and He D W 2017 Diam. Relat. Mater. 77 41
[29] Weidner D J, Wang Y B and Vaughan M T 1994 Science 266 419
[30] Peng B, Kou Z L, Zhao M X, Jiang M L, Zhang J W, Wang Y P and Zhang L 2020 Chin. Phys. B 29 090703
[31] Daviau K and Lee K K M 2017 Phys. Rev. B 95 134108
[32] Kidokoro Y, Umemoto K, Hirose K and Ohishi Y 2017 Am. Mineral. 102 2230
[33] Liang H, Guan S X, Li X, Liang A K, Zeng Y, Liu C Q, Chen H H, Lin W T, He D W, Wang L P and Peng F 2019 Ceram. Int. 45 7885
[34] Weidner D J, Wang Y B and Vaughan M T 1994 Geophys. Res. Lett. 21 753
[35] Yoshida M, Onodera A, Ueno M, Takemura K and Shimomura O 1993 Phys. Rev. B 48 10587
[36] Yu H, Peng F, Liang H, Guan S X, Tan L J, Xiong Z B, Xiang X J, Li Q Z, Lei L and He D W 2019 J. Phys. Chem. C 123 28437
[37] Chen H H, Liang H, Peng F, Li H S, Wang B, Xia X X, Li X D, Wang P and Wang L P 2019 Inorg. Chem. 58 405
[38] Singh A K, Liermann H-P, Akahama Y and Kawamura H 2007 J. Appl. Phys. 101 123526
[39] He D W and Duffy T S 2006 Phys. Rev. B 73 134106
[40] Liang H, Chen H H, Peng F, Liu L X, Li X, Liu K, Liu C Q and Li X D 2018 J. Phys. Chem. Solids 121 256
[41] Tan J, Meadows P J, Zhang D, Chen X, López-Honorato E, Zhao X, Yang F, Abram T and Xiao P 2009 J. Nucl. Mate. 393 22
[42] Lambrecht W R L, Segall B, Methfessel M and van Schilfgaarde M 1991 Phys. Rev. B 44 3685
[43] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L and Ritchie R O 2011 Nat. Mater. 10 123
[44] Strossner K, Cardona M and Choyke W J 1987 Solid State Commun. 63 113
[45] Lin Z J, Wang L, Zhang J Z, Guo X Y, Yang W G, Mao H K and Zhao Y S 2010 Scr. Mater. 63 981
[46] Hao G L, Wang X F and Li X Y 2015 Chin. Phys. Lett. 32 026103
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
Jia-Hao Chen(陈嘉豪), Ying Wang(王颖), Xin-Xing Fei(费新星), Meng-Tian Bao(包梦恬), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(9): 098505.
[3] First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100) interface
Haoran Zhu(祝浩然), Weifeng Xie(谢伟锋), Xin Liu(刘欣), Yang Liu(刘杨), Jinli Zhang(张金利), and Xu Zuo(左旭). Chin. Phys. B, 2023, 32(7): 077303.
[4] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[5] Application of silicon carbide temperature monitors in 49-2 swimming-pool test reactor
Guang-Sheng Ning(宁广胜), Li-Min Zhang(张利民), Wei-Hua Zhong(钟巍华), Sheng-Hong Wang(王绳鸿), Xin-Yu Liu(刘心语), Ding-Ping Wang(汪定平), An-Ping He(何安平), Jian Liu(刘健), and Chang-Yi Zhang(张长义). Chin. Phys. B, 2023, 32(5): 056102.
[6] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[7] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[11] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[12] Proton induced radiation effect of SiC MOSFET under different bias
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(10): 108503.
[13] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[14] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[15] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
No Suggested Reading articles found!