INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification |
Jin-Xin Liu(刘金鑫), Fang Peng(彭放)†, Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君) |
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract Silicon carbide (SiC) is a high-performance structural ceramic material with excellent comprehensive properties, and is unmatched by metals and other structural materials. In this paper, raw SiC powder with an average grain size of 5 upmu m was sintered by an isothermal-compression process at 5.0 GPa and 1500 ℃; the maximum hardness of the sintered samples was 31.3 GPa. Subsequently, scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500 ℃ and 0-16.0 GPa, respectively. Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy. Further, high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression. This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.
|
Received: 19 August 2022
Revised: 07 November 2022
Accepted manuscript online: 29 November 2022
|
PACS:
|
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074273). High-pressure synchrotron radiation XRD experiments were carried out at the 4W2 beamline of the Beijing Synchrotron Radiation Facility (BSRF). |
Corresponding Authors:
Fang Peng
E-mail: pengfang@scu.edu.cn
|
Cite this article:
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君) High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification 2023 Chin. Phys. B 32 098101
|
[1] Guo X Z, Yang H, Zhang L J and Zhu X Y 2010 Ceram. Int. 36 161 [2] Tanaka H 2002 J. Ceram. Soc. Jpn. 110 877 [3] Casady J B and Johnson R W 1996 Solid State Electron. 39 1409 [4] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103 [5] Rahman A, Singh A, Harimkar S P and Singh R P 2014 Ceram. Int. 40 12081 [6] Feng D, Ren Q X, Ru H Q, Wang W, Jiang Y, Ren S Y and Zhang C P 2019 Ceram. Int. 45 23984 [7] Barick P, Chakravarty D, Saha B P, Mitra R and Joshi S V 2016 Ceram. Int. 42 3836 [8] Zhao Y C and Wang M Z 2007 Chin. Phys. Lett. 24 2412 [9] Li Y D, Cheng Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C and Chen L C 2020 Chin. Phys. B 29 078101 [10] Sun R X, Wei X D, Hu W T, Ying P, Wu Y J, Wang L Y, Chen S, Zhang X, Ma M D, Yu D L, Wang L, Gao G Y, Xu B and Tian Y J 2022 Small 18 2201212 [11] Matovic B, Zivic F, Mitrovic S, Prsic D, Maksimovic V, Volkov-Husovic T, Kumar R and Daneu N 2016 Mater. Lett. 164 68 [12] Guan S X, Peng F, Liang H, Fan C, Tan L J, Wang Z W, Zhang Y F, Zhang J W, Yu H and He D W 2018 J. Appl. Phys. 124 215902 [13] Xiang X J, Song G Z, Zhou X F, Liang H, Xu Y, Qin S J, Wang J P, Hong F, Dai J H, Zhou B W, Liang W J, Yin Y Y, Zhao Y S, Peng F, Yu X H and Wang S M 2020 Chin. Phys. B 29 088202 [14] Matović B, Bučevac D, Urbanović V, Stanković N, Daneu N, Volkov-Husović T and Babic B 2016 J. Eur. Ceram. Soc. 36 3005 [15] Bobrovnitchii G S, Osipov O S and Filgueira M 2003 Int. J. Refract. Met. H 21 251 [16] Xiong Z B, He D X, Peng F, Guan S X, Tan L J, Yu H, Xiang X J and Liang H 2020 Int. J. Refract. Met. H. 92 105311 [17] Xie H, Deng F M, Yang X F and Han S L 2020 Ceram. Int. 46 1631 [18] Deng F M, Yang X F, Deng W L, Zhou L L, Wang H and Zhang Z W 2019 Diam. Relat. Mater. 96 25 [19] Daouadji A, Hicher P Y and Rahma A 2001 Eur. J. Mech. A-Solid 20 113 [20] Su Y Z, Wang J P, Li X, Tang Q Q, Yang J, Lei L, Tian Y, Wang Z W and He D W 2021 Ceram. Int. 47 21077 [21] Gruzdeva E N, Kardasevich V S, Suranov A V, Nesterenko T N and Rotner Y M 1985 Sov. Powder Metall. Met. Ceram. 24 603 [22] Li R R, Zhang Y F, Geng D C, Zhang G W, Watanabe H, Han W T and Wan F R 2019 Acta Phys. Sin. 68 216101 (in Chinese) [23] Sun J F, Li X P, Liang B Y, Zhao Y C and Wang M Z 2009 Chin. Phys. Lett. 26 078102 [24] Britun V F, Oleynik G S and Semenenko N P 1992 J. Mater. Sci. 27 4472 [25] Casanova C A M, Balzaretti N M, Voronin G and da Jornada J A H 1999 Diam. Relat. Mater. 8 1451 [26] Moller H J and Welsch G 1985 J. Am. Ceram. Soc. 68 320 [27] Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876 [28] Lu J R, Kou Z L, Liu T, Yan X Z, Liu F M, Ding W, Zhang Q, Zhang L L, Liu J and He D W 2017 Diam. Relat. Mater. 77 41 [29] Weidner D J, Wang Y B and Vaughan M T 1994 Science 266 419 [30] Peng B, Kou Z L, Zhao M X, Jiang M L, Zhang J W, Wang Y P and Zhang L 2020 Chin. Phys. B 29 090703 [31] Daviau K and Lee K K M 2017 Phys. Rev. B 95 134108 [32] Kidokoro Y, Umemoto K, Hirose K and Ohishi Y 2017 Am. Mineral. 102 2230 [33] Liang H, Guan S X, Li X, Liang A K, Zeng Y, Liu C Q, Chen H H, Lin W T, He D W, Wang L P and Peng F 2019 Ceram. Int. 45 7885 [34] Weidner D J, Wang Y B and Vaughan M T 1994 Geophys. Res. Lett. 21 753 [35] Yoshida M, Onodera A, Ueno M, Takemura K and Shimomura O 1993 Phys. Rev. B 48 10587 [36] Yu H, Peng F, Liang H, Guan S X, Tan L J, Xiong Z B, Xiang X J, Li Q Z, Lei L and He D W 2019 J. Phys. Chem. C 123 28437 [37] Chen H H, Liang H, Peng F, Li H S, Wang B, Xia X X, Li X D, Wang P and Wang L P 2019 Inorg. Chem. 58 405 [38] Singh A K, Liermann H-P, Akahama Y and Kawamura H 2007 J. Appl. Phys. 101 123526 [39] He D W and Duffy T S 2006 Phys. Rev. B 73 134106 [40] Liang H, Chen H H, Peng F, Liu L X, Li X, Liu K, Liu C Q and Li X D 2018 J. Phys. Chem. Solids 121 256 [41] Tan J, Meadows P J, Zhang D, Chen X, López-Honorato E, Zhao X, Yang F, Abram T and Xiao P 2009 J. Nucl. Mate. 393 22 [42] Lambrecht W R L, Segall B, Methfessel M and van Schilfgaarde M 1991 Phys. Rev. B 44 3685 [43] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L and Ritchie R O 2011 Nat. Mater. 10 123 [44] Strossner K, Cardona M and Choyke W J 1987 Solid State Commun. 63 113 [45] Lin Z J, Wang L, Zhang J Z, Guo X Y, Yang W G, Mao H K and Zhao Y S 2010 Scr. Mater. 63 981 [46] Hao G L, Wang X F and Li X Y 2015 Chin. Phys. Lett. 32 026103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|