Abstract We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers. For the C=±1 case, the two Landau levels of the bilayer experience opposite magnetic fields. We consider a mapped bilayer quantum Hall system at total filling νt=1/2+1/2 where the intralayer interaction is repulsive and the interlayer interaction is attractive. We take exact diagonalization (ED) calculations on a torus to study the phase transition when the separation distance d/lB is driven. The critical point at dc/lB = 0.68 is characterized by a collapse of degeneracy and a crossing of energy levels. In the region d/lB<dc/lB, the states of each level are highly degenerate. The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0. We find an exciton stripe phase composed of bound pairs. The ferromagnetic ground state is destroyed by the strong effective attractive potential. An electron composite-Fermion (eCF) and a hole composite Fermion (hCF) are tightly bound. In the region d/lB>dc/lB, a crossover from the d→dc limit to the large d limit is observed. The electron and hole composite Fermion liquids (CFL) are realized by composite Fermions (CF) which attach opposite fluxes, respectively.
Corresponding Authors:
Ke Yang
E-mail: yangke@ucas.ac.cn
Cite this article:
Ke Yang(杨珂) Phase transition in bilayer quantum Hall system with opposite magnetic field 2023 Chin. Phys. B 32 097303
[1] Halperin B I and Jain J K 2020 Fractional quantum hall effects: new developments, 1st Ed. (World Scientific) [2] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B31 3372 [3] Wen X G 1995 Adv. in Phys.44 405 [4] Parameswaran S A, Roy R and Sondhi S L 2013 Com. Ren. Phys.14 816 [5] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett.106 236804 [6] Levin M and Stern A 2009 Phys. Rev. Lett.103 196803 [7] Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys.5 159 [8] Eisenstein J P and MacDonald A H 2004 Nature432 691 [9] Barkeshli M and Wen X G 2011 Phys. Rev. B84 115121 [10] Suen Y W, Engel L W, Santos M B, Shayegan M and Tsui D C 1992 Phys. Rev. Lett.68 1376 [11] Luhman D R, Pan W, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 2008 Phys. Rev. Lett.101 266804 [12] Shabani J, Liu Y, Shayegan M, Pfeiffer L N, West K W and Baldwin K W 2013 Phys. Rev. B88 245413 [13] Liu Y, Graninger A L, Hasdemir S, Shayegan M, Pfeiffer L N, West K W, Baldwin K W and Winkler R 2014 Phys. Rev. Lett.112 046804 [14] Peterson M R, Papić Z and Sarma S D 2010 Phys. Rev. B82 235312 [15] He S, Xie X C, Sarma S D and Zhang F C 1991 Phys. Rev. B43 9339 [16] Geraedts S, Zaletel M P, Papić Z and Mong R S 2015 Phys. Rev. B91 205139 [17] Fertig H 1989 Phys. Rev. B40 1087 [18] Tutuc E, Shayegan M and Huse D A 2004 Phys. Rev. Lett.93 036802 [19] Wen X G and Zee A 1992 Phys. Rev. Lett.69 1811 [20] Moon K, Mori H, Yang K, Girvin S M, MacDonald A H, Zheng L, Yoshioka D and Zhang S C 1995 Phys. Rev. B51 5138 [21] Girvin S M and MacDonald A H 1995 arXiv:cond-mat/9505087v1 [22] Kellogg M, Eisenstein J P, Pfeiffer L N and West K W 2004 Phys. Rev. Lett.93 036801 [23] Halperin B I 1983 Hel. Phys. Acta56 75 [24] Halperin B I, Lee P A and Read N 1993 Phys. Rev. B47 7312 [25] Shibata N and Yoshioka D 2006 J. Phys. Soc. Jpn.75 043712 [26] Zhu Z, Fu L and Sheng D N 2017 Phys. Rev. Lett.119 117601 [27] Sheng D N, Balents L and Wang Z Q 2003 Phys. Rev. Lett.91 116802 [28] Lian B and Zhang S C 2018 Phys. Rev. Lett.120 077601 [29] Eisenstein J P, Pfeiffer L N and West K W 2019 Phys. Rev. Lett.123 066802 [30] Liu X M, Li J I A, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P and Dean C R 2022 Science375 205 [31] Moller G, Simon S H and Rezayi E H 2008 Phys. Rev. Lett.101 176803 [32] Isobe H and Fu L 2017 Phys. Rev. Lett.118 166401 [33] Wagner G, Nguyen D X, Simon S H and Halperin B I 2021 Phys. Rev. Lett.127 246803 [34] Scarola V W and Jain J K 2001 Phys. Rev. B64 085313 [35] Yoshioka D, Macdonald A H and Girvin S M 1989 Phys. Rev. B39 1932 [36] Read N and Green D 2000 Phys. Rev. B61 10267 [37] Zhu W, Liu Z, Haldane F D M and Sheng D N 2016 Phys. Rev. B94 245147 [38] Zhu Z, Sheng D N and Sodemann I 2020 Phys. Rev. Lett.124 097604 [39] Zhu Z, Sheng D N, Fu L and Sodemann I 2018 Phys. Rev. B98 155104 [40] Furukawa S and Ueda M 2012 Phys. Rev. A86 031604 [41] Wu Y H and Jain J K 2013 Phys. Rev. B87 245123 [42] Wu Y L, Regnault N and Bernevig B A 2013 Phys. Rev. B110 106802 [43] Sun K, Gu Z C, Katsura H and Sarma S D 2011 Phys. Rev. Lett.106 236803 [44] Ezawa Z F 2008 Quantum Hall effects: Field theoretical approach, related topics, 2nd Ed. (World Scientific Publishing Company) [45] Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett.59 1776 [46] Pan W, Stormer H L, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 2003 Phys. Rev. Lett.90 016801 [47] Mueed M A, Kamburov D, Pfeiffer L N, West K W, Baldwin K W and Shayegan M 2018 arXiv:1810.03600 [cond-mat.str-el] [57] Schleede J, Filinov A, Bonitz M and Fehske H 2012 Contributions to Plasma Physics52 819 [58] Boening J, Filinov A and Bonitz M 2011 Phys. Rev. B84 075130 [59] Astrakharchik G E, Kurbakov I L, Sychev D V, et al. 2021 Phys. Rev. B103 L140101 [60] Shibata N and Yoshioka D 2004 J. Phys. Soc. Jpn.73 1 [61] Zhang Y H, Rezayi E H and Yang K 2014 Phys. Rev. B90 165102 [62] Rezayi E H, Haldane and Yang K 1999 Phys. Rev. Lett.83 1219 [63] Paquet D, Rice T M and Ueda K 1985 Phys. Rev. B32 5208 [64] Alicea J, Motrunich and Refael G F 2009 Phys. Rev. Lett.103 256403 [65] Anderson P W 1984 Phys. Rev. B30 1549 [66] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett.62 981 [67] Nozieres P and Schmitt-Rink S 1985 J. Low Temp. Phys.59 195 [68] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Hecker Denschlag J and Grimm R 2004 Science305 5687 [69] Greiner M, Regal C A and Jin D S 2003 Nature426 537 [70] Zwierlein M W 2014 Superfluidity in ultracold atomic Fermi gases in Novel Superfluids2 269 [71] Holland M, Kokkelmans, Chiofalo M L and Walser R 2001 Phys. Rev. Lett.87 120406 [72] Yang K and Zhai H 2008 Phys. Rev. Lett.100 030404 [73] Chen H and Yang K 2012 Phys. Rev. B85 195113
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.