Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097303    DOI: 10.1088/1674-1056/ace61d
RAPID COMMUNICATION Prev   Next  

Phase transition in bilayer quantum Hall system with opposite magnetic field

Ke Yang(杨珂)
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers. For the C=±1 case, the two Landau levels of the bilayer experience opposite magnetic fields. We consider a mapped bilayer quantum Hall system at total filling νt=1/2+1/2 where the intralayer interaction is repulsive and the interlayer interaction is attractive. We take exact diagonalization (ED) calculations on a torus to study the phase transition when the separation distance d/lB is driven. The critical point at dc/lB = 0.68 is characterized by a collapse of degeneracy and a crossing of energy levels. In the region d/lB<dc/lB, the states of each level are highly degenerate. The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0. We find an exciton stripe phase composed of bound pairs. The ferromagnetic ground state is destroyed by the strong effective attractive potential. An electron composite-Fermion (eCF) and a hole composite Fermion (hCF) are tightly bound. In the region d/lB>dc/lB, a crossover from the ddc limit to the large d limit is observed. The electron and hole composite Fermion liquids (CFL) are realized by composite Fermions (CF) which attach opposite fluxes, respectively.
Keywords:  fractional quantum Hall effect      bilayer quantum Hall system      opposite magnetic field      quantum phase transition  
Received:  05 May 2023      Revised:  10 July 2023      Accepted manuscript online:  11 July 2023
PACS:  73.43.-f (Quantum Hall effects)  
  73.43.Nq (Quantum phase transitions)  
Corresponding Authors:  Ke Yang     E-mail:  yangke@ucas.ac.cn

Cite this article: 

Ke Yang(杨珂) Phase transition in bilayer quantum Hall system with opposite magnetic field 2023 Chin. Phys. B 32 097303

[1] Halperin B I and Jain J K 2020 Fractional quantum hall effects: new developments, 1st Ed. (World Scientific)
[2] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[3] Wen X G 1995 Adv. in Phys. 44 405
[4] Parameswaran S A, Roy R and Sondhi S L 2013 Com. Ren. Phys. 14 816
[5] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
[6] Levin M and Stern A 2009 Phys. Rev. Lett. 103 196803
[7] Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159
[8] Eisenstein J P and MacDonald A H 2004 Nature 432 691
[9] Barkeshli M and Wen X G 2011 Phys. Rev. B 84 115121
[10] Suen Y W, Engel L W, Santos M B, Shayegan M and Tsui D C 1992 Phys. Rev. Lett. 68 1376
[11] Luhman D R, Pan W, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 2008 Phys. Rev. Lett. 101 266804
[12] Shabani J, Liu Y, Shayegan M, Pfeiffer L N, West K W and Baldwin K W 2013 Phys. Rev. B 88 245413
[13] Liu Y, Graninger A L, Hasdemir S, Shayegan M, Pfeiffer L N, West K W, Baldwin K W and Winkler R 2014 Phys. Rev. Lett. 112 046804
[14] Peterson M R, Papić Z and Sarma S D 2010 Phys. Rev. B 82 235312
[15] He S, Xie X C, Sarma S D and Zhang F C 1991 Phys. Rev. B 43 9339
[16] Geraedts S, Zaletel M P, Papić Z and Mong R S 2015 Phys. Rev. B 91 205139
[17] Fertig H 1989 Phys. Rev. B 40 1087
[18] Tutuc E, Shayegan M and Huse D A 2004 Phys. Rev. Lett. 93 036802
[19] Wen X G and Zee A 1992 Phys. Rev. Lett. 69 1811
[20] Moon K, Mori H, Yang K, Girvin S M, MacDonald A H, Zheng L, Yoshioka D and Zhang S C 1995 Phys. Rev. B 51 5138
[21] Girvin S M and MacDonald A H 1995 arXiv:cond-mat/9505087v1
[22] Kellogg M, Eisenstein J P, Pfeiffer L N and West K W 2004 Phys. Rev. Lett. 93 036801
[23] Halperin B I 1983 Hel. Phys. Acta 56 75
[24] Halperin B I, Lee P A and Read N 1993 Phys. Rev. B 47 7312
[25] Shibata N and Yoshioka D 2006 J. Phys. Soc. Jpn. 75 043712
[26] Zhu Z, Fu L and Sheng D N 2017 Phys. Rev. Lett. 119 117601
[27] Sheng D N, Balents L and Wang Z Q 2003 Phys. Rev. Lett. 91 116802
[28] Lian B and Zhang S C 2018 Phys. Rev. Lett. 120 077601
[29] Eisenstein J P, Pfeiffer L N and West K W 2019 Phys. Rev. Lett. 123 066802
[30] Liu X M, Li J I A, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P and Dean C R 2022 Science 375 205
[31] Moller G, Simon S H and Rezayi E H 2008 Phys. Rev. Lett. 101 176803
[32] Isobe H and Fu L 2017 Phys. Rev. Lett. 118 166401
[33] Wagner G, Nguyen D X, Simon S H and Halperin B I 2021 Phys. Rev. Lett. 127 246803
[34] Scarola V W and Jain J K 2001 Phys. Rev. B 64 085313
[35] Yoshioka D, Macdonald A H and Girvin S M 1989 Phys. Rev. B 39 1932
[36] Read N and Green D 2000 Phys. Rev. B 61 10267
[37] Zhu W, Liu Z, Haldane F D M and Sheng D N 2016 Phys. Rev. B 94 245147
[38] Zhu Z, Sheng D N and Sodemann I 2020 Phys. Rev. Lett. 124 097604
[39] Zhu Z, Sheng D N, Fu L and Sodemann I 2018 Phys. Rev. B 98 155104
[40] Furukawa S and Ueda M 2012 Phys. Rev. A 86 031604
[41] Wu Y H and Jain J K 2013 Phys. Rev. B 87 245123
[42] Wu Y L, Regnault N and Bernevig B A 2013 Phys. Rev. B 110 106802
[43] Sun K, Gu Z C, Katsura H and Sarma S D 2011 Phys. Rev. Lett. 106 236803
[44] Ezawa Z F 2008 Quantum Hall effects: Field theoretical approach, related topics, 2nd Ed. (World Scientific Publishing Company)
[45] Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett. 59 1776
[46] Pan W, Stormer H L, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 2003 Phys. Rev. Lett. 90 016801
[47] Mueed M A, Kamburov D, Pfeiffer L N, West K W, Baldwin K W and Shayegan M 2018 arXiv:1810.03600 [cond-mat.str-el]
[57] Schleede J, Filinov A, Bonitz M and Fehske H 2012 Contributions to Plasma Physics 52 819
[58] Boening J, Filinov A and Bonitz M 2011 Phys. Rev. B 84 075130
[59] Astrakharchik G E, Kurbakov I L, Sychev D V, et al. 2021 Phys. Rev. B 103 L140101
[60] Shibata N and Yoshioka D 2004 J. Phys. Soc. Jpn. 73 1
[61] Zhang Y H, Rezayi E H and Yang K 2014 Phys. Rev. B 90 165102
[62] Rezayi E H, Haldane and Yang K 1999 Phys. Rev. Lett. 83 1219
[63] Paquet D, Rice T M and Ueda K 1985 Phys. Rev. B 32 5208
[64] Alicea J, Motrunich and Refael G F 2009 Phys. Rev. Lett. 103 256403
[65] Anderson P W 1984 Phys. Rev. B 30 1549
[66] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981
[67] Nozieres P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[68] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Hecker Denschlag J and Grimm R 2004 Science 305 5687
[69] Greiner M, Regal C A and Jin D S 2003 Nature 426 537
[70] Zwierlein M W 2014 Superfluidity in ultracold atomic Fermi gases in Novel Superfluids 2 269
[71] Holland M, Kokkelmans, Chiofalo M L and Walser R 2001 Phys. Rev. Lett. 87 120406
[72] Yang K and Zhai H 2008 Phys. Rev. Lett. 100 030404
[73] Chen H and Yang K 2012 Phys. Rev. B 85 195113
[1] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[2] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[3] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[4] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[5] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[6] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[7] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[8] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[9] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[10] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[11] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[12] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[13] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[14] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[15] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
No Suggested Reading articles found!