CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multi-band analysis on physical properties of superconducting FeSe films |
Jian-Tao Che(车剑韬)1,† and Chen-Xiao Ye(叶晨骁)2 |
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; 2 School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China |
|
|
Abstract The origins of superconductivity and pairing symmetry of order parameters are still controversial problems for FeSe thin films up to date. Under the Neumann boundary conditions, the electromagnetic properties of this system are investigated using the two-band Ginzburg-Landau theory. We calculate the temperature dependence of upper critical field in arbitrary direction and critical supercurrent density through the FeSe film. It is revealed that the normalized upper critical field is independent of the film thickness and all of our theoretical results are in accordance with the experimental data. These thus strongly indicate the existence of two-gap s-wave superconductivity in this material.
|
Received: 10 November 2022
Revised: 22 April 2023
Accepted manuscript online: 10 May 2023
|
PACS:
|
74.20.De
|
(Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Fund: It is a great pleasure to thank Professor H. Huang for patient guidance and helpful discussion. |
Corresponding Authors:
Jian-Tao Che
E-mail: chejt2013@163.com
|
Cite this article:
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁) Multi-band analysis on physical properties of superconducting FeSe films 2023 Chin. Phys. B 32 097401
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [2] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 [3] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522 [4] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630 [5] Imai T, Ahilan K, Ning F L, McQueen T M and Cava R J 2009 Phys. Rev. Lett. 102 177005 [6] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 [7] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520 [8] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B 83 060512 [9] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273 [10] Yan Y J, Zhang M, Wang A F, Ying J J, Li Z Y, Qin W, Luo X G, Li J Q, Hu J P and Chen X H 2012 Sci. Rep. 2 212 [11] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y 2012 Sci. Rep. 2 426 [12] Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2012 Nat. Phys. 8 126 [13] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K and Zhao Z X 2012 Nature 483 67 [14] Dagotto E 2013 Rev. Mod. Phys. 85 849 [15] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325 [16] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245 [17] Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P and Feng D L 2014 Phys. Rev. Lett. 112 107001 [18] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044 [19] Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M, Chang A M and Wu M K 2009 Phys. Rev. Lett. 103 117002 [20] Agatsuma A, Yamagishi T, Takeda S and Naito M 2010 Physica C 470 1468 [21] Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K and Zhou X J 2017 Chin. Phys. B 26 077402 [22] Schneider R, Zaitsev A G, Fuchs D and von Löhneysen H 2014 J. Phys.: Condens. Matter 26 455701 [23] Farrar L S, Bristow M, Haghighirad A A, McCollam A, Bending S J and Coldea A I 2020 npj Quantum Mater. 5 29 [24] Aichhorn M, Biermann S, Miyake T, Georges A and Imada M 2010 Phys. Rev. B 82 064504 [25] Yamasaki A, Matsui Y, Imada S, Takase K, Azuma H, Muro T, Kato Y, Higashiya A, Sekiyama A, Suga S, Yabashi M, Tamasaku K, Ishikawa T, Terashima K, Kobori H, Sugimura A, Umeyama N, Sato H, Hara Y, Miyagawa N and Ikeda S I 2010 Phys. Rev. B 82 184511 [26] Jiang K, Hu J P, Ding H and Wang Z Q 2016 Phys. Rev. B 93 115138 [27] Zhou S, Kotliar G and Wang Z Q 2011 Phys. Rev. B 84 140505 [28] Hu J P and Yuan J 2016 Front. Phys. 11 117404 [29] Biswas P K, Salman Z, Song Q, Peng R, Zhang J, Shu L, Feng D L, Prokscha T and Morenzoni E 2018 Phys. Rev. B 97 174509 [30] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M and Séamus Davis J C 2017 Science 357 75 [31] Schneider R, Zaitsev A G, Fuchs D and Hott R 2020 Supercond. Sci. Technol. 33 075011 [32] Sun Y, Zhang W H, Xing Y, Li F S, Zhao Y F, Xia Z C, Wang L L, Ma X C, Xue Q K and Wang J 2014 Sci. Rep. 4 6040 [33] Askerzade I N, Gencer A and Güclü N 2002 Supercond. Sci. Technol. 15 L13 [34] Gurevich A 2003 Phys. Rev. B 67 184515 [35] Zhitomirsky M E and Dao V H 2004 Phys. Rev. B 69 054508 [36] Liu M X and Gan Z Z 2007 Chin. Phys. B 16 826 [37] Liu M X 2011 Acta Phys. Sin. 60 017401 (in Chinese) [38] Silaev M and Babaev E 2012 Phys. Rev. B 85 134514 [39] Huang H, Lu Y Y and Wang W J 2012 Acta Phys. Sin. 61 167401 (in Chinese) [40] Liu M X, He L, Zhang G, Ye H, Huang X Y and Xu Y Z 2016 Acta Phys. Sin. 65 037401 (in Chinese) [41] Kong Y, Dolgov O V, Jepsen O and Andersen O K 2001 Phys. Rev. B 64 020501 [42] Khim S, Lee B, Kim J W, Choi E S, Stewart G R and Kim K H 2011 Phys. Rev. B 84 104502 [43] Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106 [44] Rhodes L C, Eschrig M, Kim T K and Watson M D 2022 Front. Phys. 10 859017 [45] Tinkham M 1996 Introduction to Superconductivity, 2nd Edn. (New York: McGraw-Hill) [46] Schneider R, Zaitsev A G, Fuchs D and Hott R 2019 Supercond. Sci. Technol. 32 025001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|