Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Size effect on transverse free vibrations of ultrafine nanothreads |
Zhuoqun Zheng(郑卓群)1, Han Li(李晗)1, Zhu Su(宿柱)1, Nan Ding(丁楠)2,†, Xu Xu(徐旭)3, Haifei Zhan(占海飞)4,5,‡, and Lifeng Wang(王立峰)1 |
1 State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2 School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China; 3 College of Mathematics, Jilin University, Changchun 130012, China; 4 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 5 School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4001, Australia |
|
|
Abstract Due to their unique properties and appealing applications, low dimensional sp3 carbon nanostructures have attracted increasing attention recently. Based on the beam theory and atomistic studies, this work carries out a comprehensive investigation on the vibrational properties of the ultrathin carbon nanothreads (NTH). Size effect is observed in transverse free vibrations of NTHs. To quantify such effects, the modified couple stress theory (MCST) is utilized to modify the Timoshenko beam theory. According to the first four order frequencies of NTHs from atomistic simulations, the critical length scale parameter of MCST is calibrated as 0.1 nm. It is shown that MCST has minor effect on the first four order modal shapes, except for the clamped boundary. MCST makes the modal shapes at the clamped boundary closer to those observed in atomistic simulations. This study suggests that to some extent the MCST-based Timoshenko beam theory can well describe the transverse vibration characteristics of the ultrafine NTHs, which are helpful for designing and fabricating the NTH-based nanoscale mechanical resonators.
|
Received: 18 April 2023
Revised: 13 June 2023
Accepted manuscript online: 21 June 2023
|
PACS:
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
Fund: Project partially supported by the National Natural Science Foundation of China (Grant No. 12102176), the China Postdoctoral Science Foundation (Grant No. 2022M711617), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20210274). |
Corresponding Authors:
Nan Ding, Haifei Zhan
E-mail: 119060@jlufe.edu.cn;zhan_haifei@zju.edu.cn
|
Cite this article:
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰) Size effect on transverse free vibrations of ultrafine nanothreads 2023 Chin. Phys. B 32 096202
|
[1] Shearer C J, Cherevan A and Eder D 2014 Adv. Mater. 26 2295 [2] Sader J E, Hanay M S, Neumann A P and Roukes M L 2018 Nano Lett. 18 1608 [3] De Bonis S, Urgell C, Yang W, Samanta C, Noury A, Vergara-Cruz J, Dong Q, Jin Y and Bachtold A 2018 Nano Lett. 18 5324 [4] Le T S D, Phan H P, Kwon S, Park S, Jung Y, Min J, Chun B J, Yoon H, Ko S H and Kim S W 2022 Adv. Funct. Mater. 32 2205158 [5] Nandanapalli K R, Mudusu D and Lee S 2019 Carbon 152 954 [6] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43 [7] Li X, Wang T, Duan P, Baldini M, Huang H T, Chen B, Juhl S J, Koeplinger D, Crespi V H and Schmidt-Rohr K 2018 J. Am. Chem. Soc. 140 4969 [8] Bakharev P V, Huang M, Saxena M, Lee S W, Joo S H, Park S O, Dong J, Camacho-Mojica D C, Jin S and Kwon Y 2020 Nat. Nanotechnol. 15 59 [9] Deng S and Berry V 2016 Mater. Today 19 197 [10] Wu Y C, Shao J L, Zheng Z and Zhan H 2021 J. Phys. Chem. C 125 915 [11] Zheng Z, Zhan H, Nie Y, Xu X, Qi D and Gu Y 2020 Carbon 161 809 [12] Li H, Li M, Li F and Kang Z 2019 Nanotechnology [13] Zhan H, Zhang G, Bell J M and Gu Y 2016 Carbon 107 304 [14] Roman R E, Kwan K and Cranford S W 2015 Nano Lett. 15 1585 [15] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Nanoscale 8 11177 [16] Zheng Z, Zhan H, Nie Y, Xu X and Gu Y 2019 J. Phys. Chem. C 123 28977 [17] Zhan H, Shang J, Lü C and Gu Y 2022 Nano Mater. Sci. 4 220 [18] Mathijsen D 2016 Reinf. Plast. 60 38 [19] Zhan H, Zhang G, Bell J M, Tan V B and Gu Y 2020 Nat. Commun. 11 1 [20] Zhan H, Zhang G, Tan V B and Gu Y 2017 Nat. Commun. 8 14863 [21] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Adv. Funct. Mater. 26 5279 [22] Juhl S J, Wang T, Vermilyea B, Li X, Crespi V H, Badding J V and Alem N 2019 J. Am. Chem. Soc. 141 6937 [23] Duan P, Li X, Wang T, Chen B, Juhl S J, Koeplinger D, Crespi V H, Badding J V and Schmidt-Rohr K 2018 J. Am. Chem. Soc. 140 7658 [24] Duan K, Li Y, Li L, Hu Y and Wang X 2018 Nanoscale 10 8058 [25] Askes H, Suiker A and Sluys L 2002 Arch. Appl. Mech. 72 171 [26] Yang F, Chong A, Lam D C C and Tong P 2002 Int. J. Solids Struct. 39 2731 [27] Wang L, He X, Sun Y and Liew K 2017 Eng. Anal. Bound. Elem. 84 231 [28] Ding N, Xu X and Zheng Z 2023 Acta Mech. 234 1221 [29] Wang L and Hu H 2005 Phys. Rev. B 71 195412 [30] Zhao J, Zhang B, Liu D, Konstantinidis A A, Kang G and Zhang X 2022 Acta Mech. Sin. 38 421188 [31] Darvishi F and Rahmani O 2022 Mech. Adv. Mater. Struc. 1 [32] Duan W, Wang C M and Zhang Y 2007 J. Appl. Phys. 101 024305 [33] Xu E S, Lammert P E and Crespi V H 2015 Nano Lett. 15 5124 [34] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472 [35] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783 [36] Shen Y and Wu H 2012 Appl. Phys. Lett. 100 101909 [37] Liu Y and Chen X 2014 J. Appl. Phys. 115 034303 [38] Zhao S, Zhang Y, Yang J and Kitipornchai S 2021 Carbon 174 335 [39] Demingos P G and Muniz A R 2018 Carbon 140 644 [40] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9 [41] Silveira J F and Muniz A R 2017 Carbon 113 260 [42] Pei Q X, Zhang Y W and Shenoy V B 2010 Nanotechnology 21 115709 [43] Shenderova O, Brenner D, Omeltchenko A, Su X and Yang L 2000 Phys. Rev. B 61 3877 [44] Zhang Y Y, Wang C M, Cheng Y and Xiang Y 2011 Carbon 49 4511 [45] Hoover W G 1985 Phys. Rev. A 31 1695 [46] Zhan H F and Gu Y T 2012 J. Appl. Phys. 111 [47] Nosé S 1984 J. Chem. Phys. 81 511 [48] Plimpton S 1995 J. Comput. Phys. 117 1 [49] Su Z, Jin G, Wang L and Wang D 2018 Int. J. Appl. Mech. 10 1850088 [50] Su Z, Wang L, Sun K and Sun J 2020 Appl. Math. Mech. 41 1303 [51] Klein C A and Cardinale G F 1993 Diam. Relat. Mater. 2 918 [52] Klein C A 1992 Mater. Res. Bull. 27 1407 [53] Hu Q, Li B, Gao X, Bi Y, Su L and Mao H K 2021 Proc. Natl. Acad. Sci. USA 118 e2118490118 [54] Lu L, Guo X and Zhao J 2017 Int. J. Eng. Sci. 116 12 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|