Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 096202    DOI: 10.1088/1674-1056/ace037
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Size effect on transverse free vibrations of ultrafine nanothreads

Zhuoqun Zheng(郑卓群)1, Han Li(李晗)1, Zhu Su(宿柱)1, Nan Ding(丁楠)2,†, Xu Xu(徐旭)3, Haifei Zhan(占海飞)4,5,‡, and Lifeng Wang(王立峰)1
1 State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2 School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China;
3 College of Mathematics, Jilin University, Changchun 130012, China;
4 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
5 School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4001, Australia
Abstract  Due to their unique properties and appealing applications, low dimensional sp3 carbon nanostructures have attracted increasing attention recently. Based on the beam theory and atomistic studies, this work carries out a comprehensive investigation on the vibrational properties of the ultrathin carbon nanothreads (NTH). Size effect is observed in transverse free vibrations of NTHs. To quantify such effects, the modified couple stress theory (MCST) is utilized to modify the Timoshenko beam theory. According to the first four order frequencies of NTHs from atomistic simulations, the critical length scale parameter of MCST is calibrated as 0.1 nm. It is shown that MCST has minor effect on the first four order modal shapes, except for the clamped boundary. MCST makes the modal shapes at the clamped boundary closer to those observed in atomistic simulations. This study suggests that to some extent the MCST-based Timoshenko beam theory can well describe the transverse vibration characteristics of the ultrafine NTHs, which are helpful for designing and fabricating the NTH-based nanoscale mechanical resonators.
Keywords:  carbon nanothread      size effect      natural frequency      modal shapes      molecular dynamics simulation  
Received:  18 April 2023      Revised:  13 June 2023      Accepted manuscript online:  21 June 2023
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant No. 12102176), the China Postdoctoral Science Foundation (Grant No. 2022M711617), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20210274).
Corresponding Authors:  Nan Ding, Haifei Zhan     E-mail:  119060@jlufe.edu.cn;zhan_haifei@zju.edu.cn

Cite this article: 

Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰) Size effect on transverse free vibrations of ultrafine nanothreads 2023 Chin. Phys. B 32 096202

[1] Shearer C J, Cherevan A and Eder D 2014 Adv. Mater. 26 2295
[2] Sader J E, Hanay M S, Neumann A P and Roukes M L 2018 Nano Lett. 18 1608
[3] De Bonis S, Urgell C, Yang W, Samanta C, Noury A, Vergara-Cruz J, Dong Q, Jin Y and Bachtold A 2018 Nano Lett. 18 5324
[4] Le T S D, Phan H P, Kwon S, Park S, Jung Y, Min J, Chun B J, Yoon H, Ko S H and Kim S W 2022 Adv. Funct. Mater. 32 2205158
[5] Nandanapalli K R, Mudusu D and Lee S 2019 Carbon 152 954
[6] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
[7] Li X, Wang T, Duan P, Baldini M, Huang H T, Chen B, Juhl S J, Koeplinger D, Crespi V H and Schmidt-Rohr K 2018 J. Am. Chem. Soc. 140 4969
[8] Bakharev P V, Huang M, Saxena M, Lee S W, Joo S H, Park S O, Dong J, Camacho-Mojica D C, Jin S and Kwon Y 2020 Nat. Nanotechnol. 15 59
[9] Deng S and Berry V 2016 Mater. Today 19 197
[10] Wu Y C, Shao J L, Zheng Z and Zhan H 2021 J. Phys. Chem. C 125 915
[11] Zheng Z, Zhan H, Nie Y, Xu X, Qi D and Gu Y 2020 Carbon 161 809
[12] Li H, Li M, Li F and Kang Z 2019 Nanotechnology
[13] Zhan H, Zhang G, Bell J M and Gu Y 2016 Carbon 107 304
[14] Roman R E, Kwan K and Cranford S W 2015 Nano Lett. 15 1585
[15] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Nanoscale 8 11177
[16] Zheng Z, Zhan H, Nie Y, Xu X and Gu Y 2019 J. Phys. Chem. C 123 28977
[17] Zhan H, Shang J, Lü C and Gu Y 2022 Nano Mater. Sci. 4 220
[18] Mathijsen D 2016 Reinf. Plast. 60 38
[19] Zhan H, Zhang G, Bell J M, Tan V B and Gu Y 2020 Nat. Commun. 11 1
[20] Zhan H, Zhang G, Tan V B and Gu Y 2017 Nat. Commun. 8 14863
[21] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Adv. Funct. Mater. 26 5279
[22] Juhl S J, Wang T, Vermilyea B, Li X, Crespi V H, Badding J V and Alem N 2019 J. Am. Chem. Soc. 141 6937
[23] Duan P, Li X, Wang T, Chen B, Juhl S J, Koeplinger D, Crespi V H, Badding J V and Schmidt-Rohr K 2018 J. Am. Chem. Soc. 140 7658
[24] Duan K, Li Y, Li L, Hu Y and Wang X 2018 Nanoscale 10 8058
[25] Askes H, Suiker A and Sluys L 2002 Arch. Appl. Mech. 72 171
[26] Yang F, Chong A, Lam D C C and Tong P 2002 Int. J. Solids Struct. 39 2731
[27] Wang L, He X, Sun Y and Liew K 2017 Eng. Anal. Bound. Elem. 84 231
[28] Ding N, Xu X and Zheng Z 2023 Acta Mech. 234 1221
[29] Wang L and Hu H 2005 Phys. Rev. B 71 195412
[30] Zhao J, Zhang B, Liu D, Konstantinidis A A, Kang G and Zhang X 2022 Acta Mech. Sin. 38 421188
[31] Darvishi F and Rahmani O 2022 Mech. Adv. Mater. Struc. 1
[32] Duan W, Wang C M and Zhang Y 2007 J. Appl. Phys. 101 024305
[33] Xu E S, Lammert P E and Crespi V H 2015 Nano Lett. 15 5124
[34] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[35] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[36] Shen Y and Wu H 2012 Appl. Phys. Lett. 100 101909
[37] Liu Y and Chen X 2014 J. Appl. Phys. 115 034303
[38] Zhao S, Zhang Y, Yang J and Kitipornchai S 2021 Carbon 174 335
[39] Demingos P G and Muniz A R 2018 Carbon 140 644
[40] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
[41] Silveira J F and Muniz A R 2017 Carbon 113 260
[42] Pei Q X, Zhang Y W and Shenoy V B 2010 Nanotechnology 21 115709
[43] Shenderova O, Brenner D, Omeltchenko A, Su X and Yang L 2000 Phys. Rev. B 61 3877
[44] Zhang Y Y, Wang C M, Cheng Y and Xiang Y 2011 Carbon 49 4511
[45] Hoover W G 1985 Phys. Rev. A 31 1695
[46] Zhan H F and Gu Y T 2012 J. Appl. Phys. 111
[47] Nosé S 1984 J. Chem. Phys. 81 511
[48] Plimpton S 1995 J. Comput. Phys. 117 1
[49] Su Z, Jin G, Wang L and Wang D 2018 Int. J. Appl. Mech. 10 1850088
[50] Su Z, Wang L, Sun K and Sun J 2020 Appl. Math. Mech. 41 1303
[51] Klein C A and Cardinale G F 1993 Diam. Relat. Mater. 2 918
[52] Klein C A 1992 Mater. Res. Bull. 27 1407
[53] Hu Q, Li B, Gao X, Bi Y, Su L and Mao H K 2021 Proc. Natl. Acad. Sci. USA 118 e2118490118
[54] Lu L, Guo X and Zhao J 2017 Int. J. Eng. Sci. 116 12
[1] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[4] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Unraveling the molecular mechanism of prion disease:Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[7] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!