Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097501    DOI: 10.1088/1674-1056/acc3f7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications

Jian Wu(武剑)1, Bing Lu(卢冰)1, Ying Zhang(张颖)1, Yixin Chen(陈一鑫)1, Kai Sun(孙凯)1, Daming Chen(陈大明)2, Qiang Li(李强)3, Yingli Liu(刘颖力)1, and Jie Li(李颉)1,†
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
3 School of Instrument and Electronics, North University of China, Taiyuan 030000, China
Abstract  Magneto-dielectric properties of Co2Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work. Ba3Co2Fe24-xGdxO41 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) materials are successfully prepared by using solid-state method at 925 ℃ for 4 h with 2.5-wt% Bi2O3 sintering aids. The content of Gd3+ ion can affect micromorphology, grain size, bulk density, and magneto-dielectric properties of the ferrite. With Gd3+ ion content increasing, saturation magnetization (Ms) first increases and then decreases. The maximum value of Ms is 44.86 emu/g at x =0.15. Additionally, sites occupied by Gd3+ ions can change magnetic anisotropy constant of the ferrite. Magnetocrystalline anisotropy constant (K1) is derived from initial magnetization curve, and found to be related to spin-orbit coupling and intersublattice interactions between metal ions. The real part of magnetic permeability (μ') and real part of dielectric permittivity (ε') are measured in a frequency range of 10 MHz-1 GHz. When x =0.15, material has excellent magneto-dielectric properties (μ' ≈ 12.2 and ε' ≈ 17.61), low magnetic loss (tan δμ ≈ 0.03 at 500 MHz), and dielectric loss (tan δε ≈ 0.04 at 500 MHz). The results show that Gd-doped Co2Z ferrite has broad application prospects in multilayer filters and high-frequency antennas.
Keywords:  Co2Z ferrite      magneto-dielectric properties      Gd doping      high-frequency applications  
Received:  30 October 2022      Revised:  07 February 2023      Accepted manuscript online:  14 March 2023
PACS:  75.50.Gg (Ferrimagnetics)  
  75.47.Lx (Magnetic oxides)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3504800), the National Natural Science Foundation of China (Grant Nos. 61901142, 52003256, and 51902037), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211259).
Corresponding Authors:  Jie Li     E-mail:  lijie@uestc.edu.cn

Cite this article: 

Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉) Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications 2023 Chin. Phys. B 32 097501

[1] Wu H R, Huang F Z, Ti R X, Lu X M, Zhang C Y, Yuan L, Xu Y and Zhang L W 2021 J. Alloys Compd. 861 157996
[2] Hassan Z, Sadiq I, Hussain R, Sadiq F, Idrees M, Hussain S, Riaz S and Naseem S 2022 J. Alloys Compd. 906 164324
[3] Xu J J, Lin P P, Chen Q Q, Zhao X, He P, Lin T S, Jiang C L, Liu Y, Liu H Z and Long W M 2021 Ceramics International 47 973
[4] Lin Y N, Jin L C, Zhang H W, Zhong Z Y, Yang Q H, Rao Y H and Li M M 2020 J. Magn. Magn. Mater. 496 165886
[5] Yang Y, Li J, Zhang H W, Wang G, Rao Y H and Gan G W 2019 J. Magn. Magn. Mater. 487 165318
[6] Gan G W, Zhang D N, Li J, Wang G, Huang X, Yang Y, Rao Y H, Wang X Y and Zhang H W 2020 Ceramics International 46 27996
[7] Huo X Y, Su H, Wang Y, Li Y X and Tang X L 2021 Ceramics International 47 17120
[8] Singh A P, Pandey O P and Sharma P 2022 Mater. Chem. Phys. 277 125574
[9] Tran N, Yang R B, Jeong W H, Manh D H, Phan T L and Lee B W 2022 J. Am. Ceram. Soc. 105 4122
[10] Singh A P, Pandey O P and Sharma P 2021 Ceramics International 47 22550
[11] Manhas A, Kumar A and Singh M 2019 Proceedings of the National Conference on Recent Advances in Condensed Matter Physics: Racmp-2018 2093 020021
[12] Al-Hwaitat E S, Hussein M A, Bsoul I, Buqain R A and Mahmood S H 2019 Acta Phys. Pol. A 136 548
[13] Xu C, Zhang A L, Feng Z J, Lu W L, Kang B J, Zhang J C, Ge J Y and Cao S X 2019 Phys. Chem. Chem. Phys. 21 25826
[14] Zhang X Z, Yue Z X, Meng S Q, Peng B and Yuan L X 2015 Mater. Res. Bull. 65 238
[15] Kalyani B, Pujari N, Edukondalu A, Reddy M S and Vardhani C P 2022 Chin. J. Phys. 79 141
[16] Tran N, Phan T L, Dang N T, Yang D S and Lee B W 2019 J. Phys. Chem. Solids 131 55
[17] Li J, Zhang H W, Li Y X, Li Q and Yu G L 2014 Journal of Superconductivity and Novel Magnetism 27 793
[18] Wang X Y, Zhang H W, Shi L, Li J, Jin L C, Cheng L, Jia L J, Peng R and Zhang D N 2022 J. Alloys Compd. 899 163146
[19] Li J, Hong Y, He S, Li W K, Bai H, Xia Y H, Sun G A and Zhou Z X 2022 J. Adv. Ceram. 11 263
[20] Qi G M, Liu Y L, Chen Y J, Liu Q, Chen J F, Yin Q S and Zhang H W 2021 J. Mater. Sci.-Mater. El. 32 25769
[21] Pullar R C 2012 Prog. Mater. Sci. 57 1191
[22] Singh A P, Pandey O P and Sharma P 2020 Journal of Superconductivity and Novel Magnetism 33 519
[23] Guo Y Q, Wang S Z and Nie Y 2019 J. Wuhan Univ. Technol. 34 1037
[24] Wen D D, Chen X, Luo D S, Lu Y, Chen Y X, Li R P and Cui W 2022 Chin. Phys. B 31 078503
[25] Han J M, Sun L, Cao E S, Hao W T, Zhang Y J and Ju L 2021 Chin. Phys. B 30 096102
[26] Huo X Y, Su H, Zhang Q, Huang F Y, Wu X H, Tang X L, Li Y X and Jing Y L 2023 J. Alloys Compd. 933 167747
[1] Structural, electronic and magnetic properties of Fe-doped strontium ruthenates
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良). Chin. Phys. B, 2023, 32(11): 117101.
[2] Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2
Yu-Qing Huang(黄雨晴), Peng-Yu Zheng(郑鹏宇), Rui Liu(刘瑞), Xi-Tong Xu(许锡童), Zi-Yang Wu(吴紫阳), Chao Dong(董超), Jun-Feng Wang(王俊峰), Zhi-Ping Yin(殷志平), and Shuang Jia(贾爽). Chin. Phys. B, 2023, 32(10): 107502.
[3] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[6] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[7] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[8] Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites
Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军). Chin. Phys. B, 0, (): 66102-066102.
[9] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[10] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[11] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[12] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[13] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[14] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[15] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
No Suggested Reading articles found!