1 College of Science, Guilin University of Technology, Guilin 541004, China; 2 Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China; 3 Faculty of Physics, Hubei University, Wuhan 430062, China
Abstract The competition between different magnetic structures in hole-doped Fe-pnicitides is explored based on an extended five-orbital Hubbard model including long-range Coulomb interactions. Our results show that the stabilized magnetic structure evolves with increasing hole doping level. Namely, the stripe antiferromagnetic phase dominates at zero doping, while magnetic structures with more antiferromagnetic linking numbers such as the staggered tetramer, staggered trimer, and staggered dimer phases become energetically favorable as the hole density increases. At a certain doping level, energy degeneracy of different magnetic structures appears, indicating strong magnetic frustration and magnetic fluctuations in the system. We suggest that the magnetic competition induced by the hole doping may explain the fast decrease of the Neel temperature TN and the moderately suppressed magnetic moment in the hole doped Fe-pnicitides. Moreover, our results show a sign reversal of the kinetic energy anisotropy as the magnetic ground state evolves, which may be the mechanism behind the puzzling sign reversal of the in-plane resistivity anisotropy in hole-doped Fe-pnicitides.
Fund: Project supported by the Guangxi Natural Science Foundation, China (Grant Nos. 2022GXNSFAA035560 and GuikeAD20159009) and the Scientific Research Foundation of Guilin University of Technology (Grant No. GLUTQD2017009).
Yuan-Fang Yue(岳远放), Zhong-Bing Huang(黄忠兵), Huan Li(黎欢),Xing Ming(明 星), and Xiao-Jun Zheng(郑晓军) Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor 2023 Chin. Phys. B 32 097403
[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys.78 17 [2] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys.87 457 [3] Inosov D S 2016 Comptes Rendus Phys.17 60 [4] Bascones E, Valenzuela B and Calderon M J 2016 Comptes Rendus Phys.17 36 [5] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zeng G Q 2015 Chin. Phys. Lett.32 107401 [6] Hong X C, Wang A F, Zhang Z, Pan J, He L P, Luo X G, Chen X H and Li S Y 2015 Chin. Phys. Lett.32 127403 [7] Johnston D C 2010 Adv. Phys.59 803 [8] Dai P C, Hu J P and Dagotto E 2012 Nat. Phys.8 709 [9] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA108 6878 [10] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B22 087402 [11] Nakajima M, Liang T, Ishida S, Tomioka Y, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Ito T and Uchida S 2011 Proc. Natl. Acad. Sci. USA108 12238 [12] Dusza A, Lucarelli A, Pfuner F, Chu J H, Fisher I R and Degiorg L 2011 Europhys. Lett.93 37002 [13] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science329 824 [14] de'Medici L, Giovannetti G and Capone M 2014 Phys. Rev. Lett.112 177001 [15] Hardy F, Burger P, Wolf T, Fisher R A, Schweiss P, Adelmann P, Heid R, Fromknecht R, Eder R, Ernst D, Lohneysen H and Meingast C 2010 Europhys. Lett.91 47008 [16] Popovich P, Boris A V, Dolgov O V, Golubov A A, Sun D L, Lin C T, Kremer R K and Keimer B 2010 Phys. Rev. Lett.105 027003 [17] Pramanik A K, Abdel-Hafiez M, Aswartham S, Wolter A U B, Wurmehl S, Kataev V and Büchner B 2011 Phys. Rev. B84 064525 [18] Mu G, Luo H, Wang Z, Shan L, Ren C and Wen H H 2009 Phys. Rev. B79 174501 [19] Kim J S, Kim E G, Stewart G R, Chen X H and Wang X F 2011 Phys. Rev. B83 172502 [20] Abdel-Hafiez M, Aswartham S, Wurmehl S, Grinenko V, Hess C, Drechsler S L, Johnston S, Wolter A U B, Büchner B, Rosner H and Boeri L 2012 Phys. Rev. B85 134533 [21] Degiorgi L 2011 New J. Phys.13 023011 [22] Li G, Hu W Z, Dong J, Li Z, Zheng P, Chen G F, Luo J L and Wang N L 2008 Phys. Rev. Lett.101 107004 [23] Yang J, Hüvonen D, Nagel U, Room T, Ni N, Canfield P C, Bud'ko S L, Carbotte J P and Timusk T 2009 Phys. Rev. Lett.102 187003 [24] Wang N L, Hu W Z, Chen Z G, Yuan R H, Li G, Chen G F and Xiang T 2012 J. Phys.: Condens. Matter24 294202 [25] Brouet V, Jensen M F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Forget A and Colson D 2012 arXiv:1105.5604 [cond-mat.supr-con] [26] Yi M, Lu D H, Analytis J G, Chu J H, Mo S K, He R H, Moore R G, Zhou X J, Chen G F, Luo J L, Wang N L, Hussain Z, Singh D J, Fisher I R and Shen Z X 2009 Phys. Rev. B80 024515 [27] Ding H, Nakayama K, Richard P, Souma S, Sato T, Takahashi T, Neupane M, Xu Y M, Pan Z H, Fedorov A V, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2011 J. Phys.: Condens. Matter23 135701 [28] Yoshida T, Ideta S, Nishi I, Fujimori A, Yi M, Moore R G, Mo S K, Lu D H, Shen Z X, Hussain Z, Kihou K, Shirage P M, Kito H, Lee C H, Iyo A, Eisaki H and Harima H 2014 Front. Phys. 200017 [29] Terashima T, Kimata M, Kurita N, Satsukawa H, Harada A, Hazama K, Imai M, Sato A, Kihou K, Lee C H, Kito H, Eisaki H, Iyo A, Saito T, Fukazawa H, Kohori Y, Harima H and Uji S 2010 J. Phys. Soc. Jpn.79 053702 [30] Mallett B P P, Wang C N, Marsik P, Sheveleva E, Yazdi-Rizi M, Tallon J L, Adelmann P, Wolf T and Bernhard C 2017 Phys. Rev. B95 054512 [31] Blomberg E C, Tanatar M A, Fernandes R M, Mazin I I, Shen B, Wen H H, Johannes M D, Schmalian J and Prozorov R 2013 Nat. Commun.4 1914 [32] Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B and Chen X H 2014 Phys. Rev. B89 174512 [33] Liang S, Moreo A and Dagotto E 2013 Phys. Rev. Lett.111 47004 [34] Fernandes R M, Chubukov A and Schmalian J 2014 Nat. Phys.10 97 [35] Christensen M H, Kang J, Andersen B M and Fernandes R M 2016 Phys. Rev. B93 085136 [36] Fernandes R M, Abrahams E and Schmalian J 2011 Phys. Rev. Lett.107 217002 [37] Zheng X J, Huang Z B, Liu D Y and Zou L J 2015 Phys. Rev. B92 085109 [38] Zheng X J, Huang Z B and Zou L J 2015 Chin. Phys. B24 017404 [39] Jiang K, Hu J P, Ding H and Wang Z Q 2016 Phys. Rev. B93 115138 [40] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M and Valent R 2015 Nat. Phys.11 953 [41] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett.101 087004 [42] Brydon P M R, Daghofer M and Timm C 2011 J. Phys.: Condens. Matter23 246001 [43] Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn.79 044705 [44] Belozerov A S, Korotin M A, Anisimov V I and Poteryaev A I 2012 Phys. Rev. B85 045109 [45] Zheng X J, Huang Z B, Li H, Yang F and Lin H Q 2019 J. Phys.: Condens. Matter31 055601
Neutron diffraction study on composite compound Nd2Co7 Yang Yu-Qi(杨育奇), Li Guan-Nan(李冠男), Wang Tong(王通), Huang Qing-Zhen(黄清镇), Gao Qing-Qing(高庆庆), Li Jing-Bo(李静波), Liu Guang-Yao(刘广耀), Luo Jun(骆军), and Rao Guang-Hui(饶光辉) . Chin. Phys. B, 2011, 20(10): 106101.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.