CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic-field-controlled spin valve and spin memory based on single-molecule magnets |
Zhengzhong Zhang(张正中)1,2,†, Ruya Guo(郭儒雅)1, Rui Bo(薄锐)1, and Hao Liu(刘昊)1,‡ |
1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003, China; 2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China |
|
|
Abstract A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices. The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field. Based on this feature, we theoretically investigate a magnetic-field-controlled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction, which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode. Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization. Moreover, different magnetic configurations can be "read out" based on different resistance states or different spin polarization parameters in the current spectrum, even in the absence of a magnetic field. Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices. The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule. This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices, with potential applications in future high-density nonvolatile memory devices.
|
Received: 17 January 2023
Revised: 10 April 2023
Accepted manuscript online: 24 April 2023
|
PACS:
|
75.50.Xx
|
(Molecular magnets)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11404322), the Natural Science Foundation of Huai’an (Grant Nos. HAB202229 and HAB202150), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJD140002). |
Corresponding Authors:
Zhengzhong Zhang, Hao Liu
E-mail: zeikeezhang@163.com;hyitliuh@163.com
|
Cite this article:
Zhengzhong Zhang(张正中), Ruya Guo(郭儒雅), Rui Bo(薄锐), and Hao Liu(刘昊) Magnetic-field-controlled spin valve and spin memory based on single-molecule magnets 2023 Chin. Phys. B 32 097502
|
[1]Žutiá I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Yasuhiro F, Le W, Hiroshi I, Saburo T, Sadamichi M and Chika O Y 2011 Nat. Mater. 10 527 [3] Park B G, Wunderlich J, Marti X, Holy V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B and Jungwirth T 2011 Nat. Mater. 10 347 [4] Jedema F J, Filip A T and van Wees B J 2001 Nature 410 345 [5] Dieny B 1991 Phys. Rev. B 43 1297 [6] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 [7] Moodera J, Kinder L, Wong T and Meservey R 1995 Phys. Rev. Lett. 74 3273 [8] Prigodin V N, Raju N P, Pokhodnya K I, Miller J S and Epstein A J 2002 Adv. Mater. 14 1230 [9] Nguyen T D, Ehrenfreund E and Vardeny Z V 2012 Science 337 204 [10] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821 [11] Yoo J W, Chen C Y, Jang H W, Bark C W, Prigodin V N, Eom C B and Epstein A J 2010 Nat. Mater. 9 638 [12] Ma Y J, Hu J X, Han S D, Pan J, Li J H and Wang G M 2020 J. Am. Chem. Soc. 142 2682 [13] Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2020 Chin. Phys. B 29 017303 [14] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145 [15] Escalera-Moreno L, Baldov J J, Gaita-Ario A and Coronado E 2018 Chem. Sci. 9 3265 [16] Gaita-Ario A, Luis F, Hill S and Coronado E 2019 Nat. Chem. 11 301 [17] Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamki A and Layfield R A 2018 Science 362 6421 [18] Leuenbergerand M N and Loss D 2001 Nature 410 789 [19] Zyazin A S, van den Berg J W G, Osorio E A, van der Zant H S J, Konstantinidis N P, Leijnse M, Wegewijs M R, May F, Hofstetter W, Danieli C and Cornia A 2010 Nano Lett. 10 3307 [20] Gaudenzi R, Misiorny M, Burzur E, Wegewijs M R and van der Zant H S J 2017 J. Chem. Phys. 146 092330 [21] Chen Y C and Tong M L 2022 Chem. Sci. 13 8716 [22] Shao D and Wang X Y 2020 Chin. J. Chem. 38 1005 [23] Andoni Z, Jose M S and Enrique C 2021 Coordinat. Chem. Rev. 441 213984 [24] Wang J H, Lia Z Y, Yamashita M and Bu X H 2021 Coordinat. Chem. Rev. 428 213617 [25] Prins F, Monrabal-Capilla M, Osorio E A, Coronado E and van der Zant H S J 2011 Adv. Mater. 23 1545 [26] Meded V, Bagrets A, Fink K, Chandrasekar R, Ruben M, Evers F, Bernand-Mantel A, Seldenthuis J S, Beukman A and van der Zant H S J 2011 Phys. Rev. B 83 245415 [27] Alam M S, Stocher M, Gieb K, Muller P, Haryono M, Student K and Grohmann A 2010 Angew. Chem. Int. Ed. 49 1159 [28] Voss S, Fonin M, Rudinger U, Burgert M and Groth U 2007 Appl. Phys. Lett. 90 133104 [29] Gehring P, Thijssen J M and van der Zant H S J 2019 Nat. Rev. Phys. 1 381 [30] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R Q and Ho W 2019 Science 364 670 [31] Heersche H B, de Groot Z, Folk J A, van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801 [32] Barraza-Lopez S, Park K, Garca-Suárez V and Ferrer J 2009 Phys. Rev. Lett. 102 246801 [33] Barraza-Lopez S, Park K, Garca-Suárez V and Ferrer J 2009 J. Appl. Phys. 105 07309 [34] Gu L and Wu R Q 2020 Phys. Rev. Lett. 125 117203 [35] Gu L and Wu R Q 2021 Phys. Rev. B 103 014401 [36] Pei T, Thomas J O, Sopp S, Tsang M Y, Dotti N, Baugh J, Chilton N F, Cardona-Serra S, Gaita-Ario A, Anderson H L and Bogani L 2022 Nat. Commun. 13 4506 [37] Hymas K and Soncini A 2019 Phys. Rev. B 99 245404 [38] Pominska A and Weymann I 2015 Phys. Rev. B 92 205419 [39] Nossa J F, Islam M F, Canali C M and Pederson M R 2013 Phys. Rev. B 88 224423 [40] Fransson J, Ren J and Zhu J X 2014 Phys. Rev. Lett. 113 257201 [41] Timm C and Elste F 2006 Phys. Rev. B 73 235304 [42] Pominska A and Weymann I 2016 Phys. Rev. B 94 035422 [43] Misiorny M, Weymann I and arnaś J 2010 Europhys. Lett. 89 18003 [44] Hu G C, Zhang Z, Zhang G P, Ren J F and Wang C K 2016 Org. Electron. 37 485 [45] Hammar H, Jaramillo J D V and Fransson J 2019 Phys. Rev. B 78 115416 [46] Wang R Q, Sheng L, Shen R, Wang B G and Xing D Y 2010 Phys. Rev. Lett. 105 057202 [47] Zhang Z Z, Jiang L, Wang R Q, Wang B G and Xing D Y 2011 Appl. Phys. Lett. 99 133110 [48] Misiorny M and Barnaś J 2007 Phys. Rev. B 76 054448 [49] Zhang Z Z and Jiang L 2014 Nanotechnology 25 365201 [50] Alez G G, Leuenberger M N and Mucciolo E R 2008 Phys. Rev. B 78 054445 [51] Romeike C, Wegewijs M R, Hofstetter W and Schoeller H 2006 Phys. Rev. Lett. 96 196601 [52] Li Y Q, Kan H J, Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2020 Physica E 124 114327 [53] Serrano G, Poggini L, Briganti M, Sorrentino A L, Cucinotta G, Malavolti L, Cortigiani B, Otero E, Sainctavit P, Loth S, Parenti F,Barra A-L, Vindigni A, Cornia A, Totti F, Mannini M and Sessoli R 2020 Nat. Mater. 19 546 [54] Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179 [55] Urdampilleta M, Klyatskaya S, Cleuziou J P, Ruben M and Wernsdorfer W 2011 Nat. Mater. 10 502 [56] Sanvito S 2011 Nat. Mater. 10 484 [57] Pominska A, Misiorny M and Weymann I 2017 Phys. Rev. B 95 155446 [58] Pominska A, Misiorny M and Weymann I 2018 Phys. Rev. B 97 035415 [59] Pominska A, Misiorny M and Weymann I 2018 Europhys. Lett. 121 38006 [60] Xie H, Wang Q, Xue H B, Jiao H J and Liang J Q 2013 J. Appl. Phys. 113 213708 [61] Misiorny M, Weymann I and Barnaś J 2009 Phys. Rev. B 79 224420 [62] Misiorny M and Barnaś J 2007 Phys. Rev. B 75 134425 [63] Elste F and Timm C 2006 Phys. Rev. B 73 235305 [64] Elste F and Timm C 2007 Phys. Rev. B 75 195341 [65] Misiorny M and Barnaś J 2007 Phys. Rev. B 77 172414 [66] Hammar H and Fransson J 2016 Phys. Rev. B 94 054311 [67] Wrzesniewski K and Weymann I 2020 Phys. Rev. B 101 245434 [68] Timm C and Ventra M D 2012 Phys. Rev. B 86 104427 [69] Lu H Z, Zhou B and Shen S Q 2009 Phys. Rev. B 79 174419 [70] Rogez G, Donnio B, Terazzi E, Gallani J L, Kappler J P, Bucher J P and Drillon M 2009 Adv. Mater. 21 4323 [71] Timm C 2007 Phys. Rev. B 76 014421 [72] Jo M H, Grose J E, Baheti K, Deshmukh M M, Sokol J J, Rumberger E M, Hendrickson D N, Long J R, Park H and Ralph D C 2006 Nano Lett. 6 2014 [73] Yoshida K, Hamada I, Sakata S, Umeno A, Tsukada M and Hirakawa K 2013 Nano Lett 13 481 [74] Hamaya K, Kitabatake M, Shibata K, Jung M, Kawamura M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2008 Phys. Rev. B 77 081302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|