Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites
Min Zhou(周敏)1,2, Xiang Jin(金香)1,2, Wen-Xing Wang(王文星)1,3, Lin Zheng(郑琳)1,2, Ru Xing(邢茹)1,2, Yi Lu(鲁毅)1,2, and Jian-Jun Zhao(赵建军)1,2,†
1 School of Physical Science and Technology, Baotou Teachers'College, Baotou 014030, China; 2 Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers'College, Baotou 014030, China; 3 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Abstract Structural, magnetic properties, critical behaviors and magnetic entropy changes of La$_{0.7-x}$Gd$_{x}$Ca$_{0.3}$MnO$_{3}$ ($x=0, 0.05, 0.1$) polycrystalline manganites have been investigated. The x-ray diffraction characterization shows that all the samples can be well indexed on an orthorhombic structure with $Pnma$ space group. Magnetic measurements show that polycrystalline samples sequentially display the characteristics of cluster spin glass states, ferromagnetic states, ferromagnetic paramagnetic coexistence states and pure paramagnetic states with increasing temperature. The Curie temperature ($T_{\rm c}$) increases with increasing the doping concentration $x$, and the ferromagnetic to paramagnetic phase transition is a second-order phase transition near $T_{\rm c}$. Critical behaviors have been studied through the modified Arrott plots and the Kouvel-Fisher method. The critical exponents of polycrystalline samples are determined to be close to the critical exponents of the tricritical mean field model ($x=0$), 3D Ising model ($x=0.05$) and 3D Heisenberg model ($x=0.1$), indicating that their ferromagnetic coupling may be the result of the short-range interactions between spins in this system. The maximum magnetic entropy changes reach values of 3.99~J/(kg$\cdot $K), 2.81~J/(kg$\cdot $K), and 4.20~J/(kg$\cdot $K) at the magnetic field of 7~T, and the relative cooling power (RCP) values of La$_{0.7-x}$Gd$_{x}$Ca$_{0.3}$MnO$_{3}$ ($x=0, 0.05, 0.1$) are 478.8~J/kg, 431.1~J/kg, and 536.98~J/kg respectively.
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 11164019, 51562032, and 61565013), the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0109), and the Research Program of Sciences at the Universities of Inner Mongolia Autonomous Region of China (Grant Nos. NJZZ11166, NJZY 16237, and NJZY 12202).
Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军) Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites 2022 Chin. Phys. B 31 066102
[1] Brown G V 1976 J. Appl. Phys.47 3673 [2] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett.78 1142 [3] Sun Y, Tong W and Zhang Y H 2001 J. Magn. Magn. Mater.232 205 [4] Wang Z M, Xu Q Y, Ni G and Zhang H 2011 Physica B406 4333 [5] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B29 096802 [6] Zhai Z Y, Xie Q Y, Chen G B, Wu X S and Gao J 2016 Chin. Phys. Lett.33 056103 [7] Wang H X, Song J H, Wang W P, Li J J, Sun J R and Yu R C 2021 Chin. Phys. Lett.38 087502 [8] Zhang K X, Qu L L, Jin F, Gao G Y, Hua E D, Zhang Z X, Wang L F and Wu W B 2021 Chin. Phys. B30 126802 [9] Thanh T D, Dung N T, Van Dang N, Bau L V, Piao H G, Phan T L, Huyen Yen P D, Hau K X, Kim D H and Yu S C 2018 AIP. Advances8 056419 [10] Wang M G, Ning C, Yang H and Qi Y 2010 Journal of Northeastern University (Natural Science)31 665 (in Chinese) [11] Sannon R D 1976 Acta Cryst.32 751 [12] Goldschmidt V M 1926 Naturwissensenschaffen14 47 [13] Hu G H, Li L W and Umehara Izuru 2016 Chin. Phys. B25 067501 [14] Fan J Y, Xu L S, Zhang X Y, Shi Y G, Zhang W C, Zhu Y, Gao B T, Hong B, Zhang L, Tong W, Pi L and Zhang Y H 2015 J. Mater. Sci.50 2130 [15] Muroi M, McCormick P G and Street R 2003 Rev. Adv. Mater. Sci.5 76 [16] Phan T L, Tola P S, Dang N T, Rlyee J S, Shon W H and Ho T A 2017 J. Magn. Magn. Mater.441 290 [17] Nag R, Sarkar B and Pal S 2019 J. Mater. Sci.30 3405 [18] Xu L S, Chen Z Y, Zhang X Y, Shi Y G, Zhu Y, Shi D N, Zhang L, Pi L, Zhang Y H and Fan J Y 2014 J. Supercond Nov. Magn.27 2779 [19] Banerjee B K 1964 Phys. Lett.12 16 [20] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford:Clarendon Press) p. 47 [21] Huang K 1987 Statistical Mechanics, 2nd edn. (New York:John Wiley & Sons, Inc.) p. 423 [22] Kouvel J S and Fisher M E 1964 Phys. Rev. A136 A1626 [23] Thaljaoui R, Pȩkela M, Fagnard J F and Vanderbemden P 2016 Physica B482 8 [24] Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett.29 917 [25] Vadnala S and Asthana S 2018 J. Magn. Magn. Mater.446 68 [26] Widom B 1965 J. Chem. Phys.43 3898 [27] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys.68 1479 [28] Liu R S, Liu J, Wang L C, Li Z R, Yu X, Mi Y, Dong Q Y, Li K, Li L D, Lv C H, Liu L F and He S L 2020 Chin. Phys. Lett.37 017501 [29] Jin X, Zhao J J, Chen H W, Cao F Z, Li C, Su T C, Wang W X, Liu J and Lu Y 2020 J. Rare Earths38 600 [30] Su L, Zhang X Q, Dong Q Y, Yang H T, Li S H and Cheng Z H 2021 Ceram. Int.47 18286
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.