Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066102    DOI: 10.1088/1674-1056/ac5617
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites

Min Zhou(周敏)1,2, Xiang Jin(金香)1,2, Wen-Xing Wang(王文星)1,3, Lin Zheng(郑琳)1,2, Ru Xing(邢茹)1,2, Yi Lu(鲁毅)1,2, and Jian-Jun Zhao(赵建军)1,2,†
1 School of Physical Science and Technology, Baotou Teachers'College, Baotou 014030, China;
2 Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers'College, Baotou 014030, China;
3 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Abstract  Structural, magnetic properties, critical behaviors and magnetic entropy changes of La$_{0.7-x}$Gd$_{x}$Ca$_{0.3}$MnO$_{3}$ ($x=0, 0.05, 0.1$) polycrystalline manganites have been investigated. The x-ray diffraction characterization shows that all the samples can be well indexed on an orthorhombic structure with $Pnma$ space group. Magnetic measurements show that polycrystalline samples sequentially display the characteristics of cluster spin glass states, ferromagnetic states, ferromagnetic paramagnetic coexistence states and pure paramagnetic states with increasing temperature. The Curie temperature ($T_{\rm c}$) increases with increasing the doping concentration $x$, and the ferromagnetic to paramagnetic phase transition is a second-order phase transition near $T_{\rm c}$. Critical behaviors have been studied through the modified Arrott plots and the Kouvel-Fisher method. The critical exponents of polycrystalline samples are determined to be close to the critical exponents of the tricritical mean field model ($x=0$), 3D Ising model ($x=0.05$) and 3D Heisenberg model ($x=0.1$), indicating that their ferromagnetic coupling may be the result of the short-range interactions between spins in this system. The maximum magnetic entropy changes reach values of 3.99~J/(kg$\cdot $K), 2.81~J/(kg$\cdot $K), and 4.20~J/(kg$\cdot $K) at the magnetic field of 7~T, and the relative cooling power (RCP) values of La$_{0.7-x}$Gd$_{x}$Ca$_{0.3}$MnO$_{3}$ ($x=0, 0.05, 0.1$) are 478.8~J/kg, 431.1~J/kg, and 536.98~J/kg respectively.
Keywords:  magnetism      magnetic entropy change      relative cooling power  
Received:  06 November 2021      Revised:  11 February 2022      Accepted manuscript online:  17 February 2022
PACS:  61.05.cp (X-ray diffraction)  
  68.35.Rh (Phase transitions and critical phenomena)  
  75.50.Gg (Ferrimagnetics)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 11164019, 51562032, and 61565013), the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0109), and the Research Program of Sciences at the Universities of Inner Mongolia Autonomous Region of China (Grant Nos. NJZZ11166, NJZY 16237, and NJZY 12202).
Corresponding Authors:  Jian-Jun Zhao     E-mail:  zhaojianjun197174@163.com

Cite this article: 

Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军) Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites 2022 Chin. Phys. B 31 066102

[1] Brown G V 1976 J. Appl. Phys. 47 3673
[2] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
[3] Sun Y, Tong W and Zhang Y H 2001 J. Magn. Magn. Mater. 232 205
[4] Wang Z M, Xu Q Y, Ni G and Zhang H 2011 Physica B 406 4333
[5] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[6] Zhai Z Y, Xie Q Y, Chen G B, Wu X S and Gao J 2016 Chin. Phys. Lett. 33 056103
[7] Wang H X, Song J H, Wang W P, Li J J, Sun J R and Yu R C 2021 Chin. Phys. Lett. 38 087502
[8] Zhang K X, Qu L L, Jin F, Gao G Y, Hua E D, Zhang Z X, Wang L F and Wu W B 2021 Chin. Phys. B 30 126802
[9] Thanh T D, Dung N T, Van Dang N, Bau L V, Piao H G, Phan T L, Huyen Yen P D, Hau K X, Kim D H and Yu S C 2018 AIP. Advances 8 056419
[10] Wang M G, Ning C, Yang H and Qi Y 2010 Journal of Northeastern University (Natural Science) 31 665 (in Chinese)
[11] Sannon R D 1976 Acta Cryst. 32 751
[12] Goldschmidt V M 1926 Naturwissensenschaffen 14 47
[13] Hu G H, Li L W and Umehara Izuru 2016 Chin. Phys. B 25 067501
[14] Fan J Y, Xu L S, Zhang X Y, Shi Y G, Zhang W C, Zhu Y, Gao B T, Hong B, Zhang L, Tong W, Pi L and Zhang Y H 2015 J. Mater. Sci. 50 2130
[15] Muroi M, McCormick P G and Street R 2003 Rev. Adv. Mater. Sci. 5 76
[16] Phan T L, Tola P S, Dang N T, Rlyee J S, Shon W H and Ho T A 2017 J. Magn. Magn. Mater. 441 290
[17] Nag R, Sarkar B and Pal S 2019 J. Mater. Sci. 30 3405
[18] Xu L S, Chen Z Y, Zhang X Y, Shi Y G, Zhu Y, Shi D N, Zhang L, Pi L, Zhang Y H and Fan J Y 2014 J. Supercond Nov. Magn. 27 2779
[19] Banerjee B K 1964 Phys. Lett. 12 16
[20] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford:Clarendon Press) p. 47
[21] Huang K 1987 Statistical Mechanics, 2nd edn. (New York:John Wiley & Sons, Inc.) p. 423
[22] Kouvel J S and Fisher M E 1964 Phys. Rev. A 136 A1626
[23] Thaljaoui R, Pȩkela M, Fagnard J F and Vanderbemden P 2016 Physica B 482 8
[24] Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29 917
[25] Vadnala S and Asthana S 2018 J. Magn. Magn. Mater. 446 68
[26] Widom B 1965 J. Chem. Phys. 43 3898
[27] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[28] Liu R S, Liu J, Wang L C, Li Z R, Yu X, Mi Y, Dong Q Y, Li K, Li L D, Lv C H, Liu L F and He S L 2020 Chin. Phys. Lett. 37 017501
[29] Jin X, Zhao J J, Chen H W, Cao F Z, Li C, Su T C, Wang W X, Liu J and Lu Y 2020 J. Rare Earths 38 600
[30] Su L, Zhang X Q, Dong Q Y, Yang H T, Li S H and Cheng Z H 2021 Ceram. Int. 47 18286
[1] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[2] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[3] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[4] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[5] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[6] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[7] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[8] Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春). Chin. Phys. B, 2021, 30(11): 117105.
[9] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[10] First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide
Mavlanjan Rahman(买吾兰江·热合曼) and Jiuyang He(何久洋). Chin. Phys. B, 2021, 30(11): 117107.
[11] Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲). Chin. Phys. B, 2021, 30(10): 107502.
[12] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[13] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[14] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[15] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[1] FAN HONG-CHANG, ZHANG YI-TONG, JIN XIN, YAO XI-XIAN. MEASUREMENT OF ANISOTROPIC ACTIVATION ENERGIES IN HIGH-Tc SUPERCONDUCTORS[J]. Chin. Phys. B, 1993, 2(10): 764 -770 .
[2] LIU GUO-LIANG, LIN-ZHENG, LIN QIN, ZHANG YU-FEN, JIANG LIAN-HUA, LI GUO-HONG, YAN SHOU-SHENG. THERMOELECTRIC POWER IN (Gd, Sm)1.85Ce0.15CuO4 SYSTEM[J]. Chin. Phys. B, 1993, 2(12): 930 -936 .
[3] Lü HUI-BIN, R.E.BURGE, D. N. QU, X. YUAN. EXPERIMENTAL STUDY OF DIFFRACTIVE PROPERTIES OF WAVELENGTH-SIZED SINGLE GROOVES COATED WITH GOLD FILM[J]. Chin. Phys. B, 1993, 2(3): 180 -189 .
[4] YAN QI-WEI, ZHANG PAN-LIN, SUN XIANG-DONG, WEI YU-NIAN, SUN KE, HU BO-PING, WANG YI-ZHONG, LIU GUI-CHUAN, GOU CHENG, CHENC YU-FEN, CHEN DONG-FENG, . A NEUTRON POWDER DIFFRACTION STUDY OF THE STRUCTURE IN Nd2Fe17Nx(x = 2.5, 3.0, 5.5)[J]. Chin. Phys. B, 1994, 3(10): 764 -768 .
[5] LOU SEN-YUE, LIN JI, ZHANG JIE-FANG, XU XUE-JUN. INFINITELY MANY SYMMETRIES OF THE BILINEAR KADOMTSEV-PETVIASHVILI EQUATION[J]. Chin. Phys. B, 1994, 3(4): 241 -249 .
[6] GUO XIAO-JIANG, PAN SHAO-HUA. NONLINEAR OPTICAL EFFECTS INDUCED BY A z5-TYPE ANHARMONIC POTENTIAL[J]. Chin. Phys. B, 1994, 3(4): 267 -278 .
[7] XU DIAN-YAN. A NEW DIRECT METHOD FOR HEAT KERNEL EXPANSION IN CURVED SPACE AND THE RESUMMED FORM OF NONDERIVATIVE TERM[J]. Chin. Phys. B, 1994, 3(9): 641 -652 .
[8] PAN ZHONG, WU RONG-HAN, WANG QI-MING. EFFECTIVE CAVITY LENGTH IN VERTICAL CAVITY SURFACE EMITTING LASER[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(11): 810 -815 .
[9] FANG ZHONG, Liu Zu-li, YAO KAI-LUN, LI ZAI-GUANG. STUDIES ON THE NEXT-NEAREST NEIGHBOR HOPPING INTERACTIONS OF $\pi$-ELECTRONS IN QUASI-ONE-DIMENSIONAL ORGANIC FERROMAGNETIC MODEL[J]. Chin. Phys. B, 1995, 4(12): 917 -922 .
[10] CHEN XIAO-LONG, LIANG JING-KUI, WANG CHONG. EFFECT OF HIGH-ANGLE DIFFRACTION DATA ON RIETVELD STRUCTURE REFINEMENT[J]. Chin. Phys. B, 1995, 4(4): 259 -267 .