CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects |
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行) |
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion (S=5/2) are investigated by the non-equilibrium Green function method. We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering quantum dot are coupled into spin pair states with (2S+1) sublevels. In the sequential tunneling regime, the differential conductance exhibits (2S+1) possible peaks, corresponding to resonance tunneling via (2S+1) sublevels. At low temperature, Kondo physics dominates transport and (2S+1) Kondo peaks occur in the local density of states and conductance. These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.
|
Received: 30 May 2012
Revised: 31 August 2012
Accepted manuscript online:
|
PACS:
|
73.63.Kv
|
(Quantum dots)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974124 and 11004124) and Shanxi Provincial Natural Science Foundation of China (Grant No. 2009011001-1). |
Corresponding Authors:
Nie Yi-Hang
E-mail: nieyh@sxu.edu.cn
|
Cite this article:
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行) Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects 2013 Chin. Phys. B 22 027307
|
[1] |
González G and Leuenberger M N 2007 Phys. Rev. Lett. 98 256804
|
[2] |
Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
|
[3] |
Heersche H B, de Groot Z, Folk J A, van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801
|
[4] |
Romeike C, Wegewijs M R, Hofstetter W and Schoeller H 2006 Phys. Rev. Lett. 96 196601
|
[5] |
Romeike C, Wegewijs M R, Hofstetter W and Schoeller H 2006 Phys. Rev. Lett. 97 206601
|
[6] |
Jo M H, Grose J E, Baheti K, Deshmukh M M, Sokol J J, Rumberger E M, Hendrickson D N, Long J R, Park H and Ralph D C 2006 Nano Lett. 6 2014
|
[7] |
Elste F and Timm C 2006 Phys. Rev. B 73 235305
|
[8] |
González G, Leuenberger M N and Mucciolo E R 2008 Phys. Rev. B 78 054445
|
[9] |
Elste F and Timm C 2010 Phys. Rev. B 81 024421
|
[10] |
Misiorny M, Weymann I and Barnaś J 2011 Phys. Rev. Lett. 106 126602
|
[11] |
Misiorny M and Barnaś J 2007 Phys. Rev. B 75 134425
|
[12] |
Misiorny M and Barnaś J 2007 Phys. Rev. B 76 054448
|
[13] |
Misiorny M and Barnaś J 2008 Phys. Rev. B 77 172414
|
[14] |
Leuenberger M N and Mucciolo E R 2006 Phys. Rev. Lett. 97 126601
|
[15] |
Candini A, Klyatskaya S, Ruben M, Wernsdorfer W and Affronte M 2011 Nano Lett. 11 2634
|
[16] |
Peng J and Li S S 2012 Chin. Phys. Lett. 29 047301
|
[17] |
Xue H B, Nie Y H, Li Z J and Liang J Q 2010 J. Appl. Phys. 108 033707
|
[18] |
Xue H B, Nie Y H, Li Z J and Liang J Q 2011 J. Appl. Phys. 109 083706
|
[19] |
Xue H B, Nie Y H, Li Z J and Liang J Q 2011 Phys. Lett. A 375 716
|
[20] |
Chang B and Liang J Q 2011 Chin. Phys. B 20 017307
|
[21] |
Fernández-Rossier J and Aguado R 2007 Phys. Rev. Lett. 98 106805
|
[22] |
Xie Y, Duan S Q, Chu W D and Yang N 2010 Chin. Phys. B 19 117304
|
[23] |
Xie Y, Duan S Q, Chu W D and Yang N 2010 Chin. Phys. B 19 117302
|
[24] |
Zhong G H and Wang L M 2010 Chin. Phys. B 19 107202
|
[25] |
Fang D K, Wu S Q, Zou C Y and Zhao G P 2012 Chin. Phys. Lett. 29 037303
|
[26] |
Wang L, Zhao W, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 057301
|
[27] |
Sui B C, Fang L and Zhang C 2011 Acta Phys. Sin. 60 077302 (in Chinese)
|
[28] |
Huang R, Song J, Guo Y Q, Wang X, Chen K J and Li W 2011 Acta Phys. Sin. 60 027301 (in Chinese)
|
[29] |
Xie C M and Fan H Y 2011 Chin. Phys. B 20 120303
|
[30] |
Li J, Wu S H, Zhang W W and Xi X Q 2011 Chin. Phys. B 20 100308
|
[31] |
Xia J J and Nie Y H 2011 Chin. Phys. B 20 097306
|
[32] |
Jia B Y, Yu Z Y, Liu Y M, Han L H, Yao W J, Feng H and Ye H 2011 Chin. Phys. B 20 027302
|
[33] |
Wang Q, Liu J, Tang N and Zeng H S 2011 Chin. Phys. B 20 020303
|
[34] |
Contreras-Pulido L D and Aguado R 2010 Phys. Rev. B 81 161309
|
[35] |
Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540
|
[36] |
Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764
|
[37] |
Fransson Jonas 2010 Non-Equilibrium Nano-Physics: A Many-Body Approach (Dordrecht: Springer)
|
[38] |
Esposito M and Galperin M 2009 Phys. Rev. B 79 205303
|
[39] |
Kostyrko T and Bulka B R 2005 Phys. Rev. B 71 235306
|
[40] |
Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
|
[41] |
Haug H J W and Jauho A P 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer)
|
[42] |
Tolea M and Bulka B R 2007 Phys. Rev. B 75 125301
|
[43] |
Ng T K 1996 Phys. Rev. Lett. 76 487
|
[44] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|