Bias-controlled spin memory and spin injector scheme in the tunneling junction with a single-molecule magnet
Zheng-Zhong Zhang(张正中)1,2,‡ and Hao Liu(刘昊)1,†
1 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China; 2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Abstract A bias-controlled spin-filter and spin memory is theoretically proposed, which consists of the junction with a single-molecule magnet sandwiched between the nonmagnetic and ferromagnetic (FM) leads. By applying different voltage pulses Vwrite across the junction, the spin direction of the single-molecule magnet can be controlled to be parallel or anti-parallel to the magnetization of the FM lead, and the spin direction of SMM can be "read out" either by the magneto-resistance or by the spin current with another series of small voltage pulses Vprobe. It is shown that the polarization of the spin current is extremely high (up to 100%) and can be manipulated by the full-electric manner. This device scheme can be compatible with current technologies and has potential applications in high-density memory devices.
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404322), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJD140005), and Zhengzhong Zhang is supported by the China Postdoctoral Science Foundation (Grant No. 2013M541635) and the Postdoctoral Science Foundation of Jiangsu Province, China (Grant No. 1301018B).
Zheng-Zhong Zhang(张正中) and Hao Liu(刘昊) Bias-controlled spin memory and spin injector scheme in the tunneling junction with a single-molecule magnet 2021 Chin. Phys. B 30 067501
[1] Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater.4 335 [2] Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Science344 1135 [3] Loth S, Baumann S, Lutz C P, Eigler D M and Heinrich A J 2012 Science335 196 [4] Khajetoorians A A, Baxevanis B, Hbner C, Schlenk T, Krause S, Wehling T O, Lounis S, Lichtenstein A, Pfannkuche D, Wiebe J and Wiesendanger R 2013 Science339 55 [5] Steinbrecher M, Sonntag A, dos Santos Dias M, Bouhassoune M, Lounis S, Wiebe J, Wiesendanger R and Khajetoorians A A 2016 Nat. Commun.7 10454 [6] Donati F, Rusponi S, Stepanow S, Wackerlin C, Singha A, Persichetti L, Baltic R, Diller K, Patthey F, Fernandes E, Dreiser J, Sljivancanin Z, Kummer K, Nistor C, Gambardella P and Brune H 2016 Science352 318 [7] Natterer F D, Yang K, Paul W, Willke P, Cho T Y, Greber T, Heinrich A J and Lutz C P 2017 Nature543 226 [8] Wiesendanger R 2009 Rev. Mod. Phys.81 1495 [9] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature383 145 [10] Bogani L and Wernsdorfer W 2008 Nat. Mater.7 179 [11] Leuenbergerand M N and Loss D 2001 Nature410 789 [12] Zyazin A S, van den Berg J W G, Osorio E A, van der Zant H S J, Konstantinidis N P, Leijnse M, Wegewijs M R, May F, Hofstetter W, Danieli C and Cornia A 2010 Nano Lett.10 3307 [13] Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamki A and Layfield R A 2018 Science362 1400 [14] Goodwin C P, Ortu F, Reta D, Chilton N F and Mills D P 2017 Nature548 439 [15] Holmberg R J and Murugesu M 2015 J. Mater. Chem. C3 11986 [16] Manninil M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A M, Arrio M A, Cornia A, Gatteschi D and Sessoli R 2009 Nat. Mater.8 194 [17] Wackerlin C, Donati F, Singha A, Baltic R, Rusponi S, Diller K, Patthey F, Pivetta M, Lan Y, Klyatskaya S, Ruben M, Brune H and Dreiser J 2016 Adv. Mater.28 5195 [18] Natterer F D, Donati F, Patthey F and Brune H 2018 Phys. Rev. Lett.121 027201 [19] Timm C and Elste F 2006 Phys. Rev. B73 235304 [20] Zhang Z Z, Jiang L, Wang R Q, Wang B G and Xing D Y 2010 Appl. Phys. Lett.97 242101 [21] Misiorny M and Barnaś J 2007 Phys. Rev. B76 054448 [22] Rogez G, Donnio B, Terazzi E, Gallani J L, Kappler J P, Bucher J P and Drillon M 2009 Adv. Mater.21 4323 [23] Heersche H B, De Groot Z, Folk J A, Van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett.96 206801 [24] Lu H Z, Zhou B and Shen S Q 2009 Phys. Rev. B79 174419 [25] Misiorny M, Weymann I and Barnaś J 2009 Phys. Rev. B79 224420 [26] Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B75 165303 [27] Merchant C A and Markovic N 2008 Phys. Rev. Lett100 156601 [28] Qi F H, Ying Y B and Jin G J 2011 Phys. Rev. B83 075310 [29] Peng X K and Zhang Z Z 2019 Chin. Phys. B28 127202 [30] Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2009 Phys. Rev. Lett.102 236806
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.