Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 083301    DOI: 10.1088/1674-1056/acd2b2
DATA PAPER Prev   Next  

A simple semiempirical model for the static polarizability of ions

Alexander S Sharipov and Boris I Loukhovitski
Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia
Abstract  A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time. As input, it requires, alongside the polarizability of neutral counterpart of a given ion, only the charge and elemental composition. This physically motivated semiempirical model is based on a number of established regularities in polarizability of charged monatomic and polyatomic compounds. In order to adjust it, the results of quantum chemistry calculations and gas-phase measurements available for a broad range of ionized multielectron species are employed. To counteract the appreciable bias in the literature data toward polarizability of monoatomic ions, for some molecular ions of general concern the results of the authors' own density functional theory calculations are additionally invoked. A total of 541 data points are used to optimize the model. It is demonstrated that the model we suggested has reasonable (given the substantial uncertainties of the reference data) accuracy in predicting the static isotropic polarizability of arbitrarily charged ions of any size and atomic composition. The resulting polarizability estimates are found to achieve a coefficient of determination of 0.93 for the assembled data set. The created analytic tool is universally applicable and might be advantageous for some applications where there is an urgent need for rapid low-cost evaluation of the static gas-phase polarizability of ionized atoms and molecules. This is especially relevant to constructing the complex models of nonequilibrium chemical kinetics aimed at precisely describing the observable refractive index (dielectric permittivity) of plasma flows. The data sets that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.07526.
Keywords:  polarizability      ions      semiempirical model      quantum chemistry  
Received:  20 February 2023      Revised:  19 April 2023      Accepted manuscript online:  05 May 2023
PACS:  33.15.Kr (Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  51.70.+f (Optical and dielectric properties)  
Fund: Project supported by the grant of the Russian Science Foundation (Project No. 22-29-00124).
Corresponding Authors:  Alexander S Sharipov     E-mail:  aleksandr.sharipov@phystech.edu,assharipov@ciam.ru

Cite this article: 

Alexander S Sharipov and Boris I Loukhovitski A simple semiempirical model for the static polarizability of ions 2023 Chin. Phys. B 32 083301

[1] Buckingham A D and Long D A 1979 Phil. Trans. R. Soc. Lond. A 293 239
[2] Lane N F 1980 Rev. Mod. Phys. 52 29
[3] Bonin K D and Kresin V V 1997 Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters (Singapore: World Scientific)
[4] Hohm U 2000 Vacuum 58 117
[5] Kaplan I G 2021 J. Phys. Chem. A 125 5117
[7] Sharipov A S, Loukhovitski B I and Loukhovitskaya E E 2022 Influence of Internal Degrees of Freedom on Electric and Related Molecular Properties SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters (Ed. by Maroulis G) (Springer International Publishing)
[8] Hohm U 2013 J. Mol. Struct. 1054-1055 282
[9] Hickey A L and Rowley C N 2014 J. Phys. Chem. A 118 3678
[10] Ma L, Indergaard J, Zhang B, Larkin I, Moro R and de Heer W A 2015 Phys. Rev. A 91 010501
[11] Loukhovitski B I, Sharipov A S and Starik A M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125102
[12] Sharipov A S, Loukhovitski B I and Starik A M 2017 J. Phys. B: At. Mol. Opt. Phys. 50 165101
[13] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200
[14] Beizaei N and Sauer S P A 2021 J. Phys. Chem. A 125 3785
[15] Sharipov A S, Pelevkin A V and Loukhovitski B I 2023 Chin. Phys. B 32 043301
[16] Shevelko V P and Vinogradov A V 1979 Phys. Scr. 19 275
[17] Thakkar A J and Das A K 2001 J. Mol. Struct. (Theochem) 547 233
[18] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[19] Singh Y, Sahoo B K and Das B P 2013 Phys. Rev. A 88 062504
[20] Zhang Y H, Tang L Y, Zhang X Z and Shi T Y 2016 Chin. Phys. B 25 103101
[21] Kumar R, Chattopadhyay S, Mani B K and Angom D 2020 Phys. Rev. A 101 012503
[22] Éhn L and Černuśak I 2020 Int. J. Quantum Chem. 121 e26467
[23] Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F and Huang X R 2022 Chin. Phys. B 31 083102
[24] Kondratjev D A, Beigman I L and Vainshtein L A 2010 J. Russ. Laser Res. 31 294
[25] McNeill A S, Peterson K A and Dixon D A 2020 J. Chem. Phys. 153 174304
[26] Wang K, Wang X, Fan Z, Zhao H Y, Miao L, Yin G J, Moro R and Ma L 2021 Eur. Phys. J. D 75 46
[27] Diercksen G H and Sadlej A J 1981 Chem. Phys. Lett. 84 390
[28] Sahoo B K 2020 Phys. Rev. A 102 022820
[29] Sahoo B K 2021 J. Phys. B: At. Mol. Opt. Phys. 54 115001
[30] Irikura K K 2021 J. Chem. Phys. 154 174302
[31] Kharitonov A I, Khoroshko K S and Shkadova V P 1974 Fluid Dyn. 9 851
[32] Bishop D M and Pouchan C 1984 J. Chem. Phys. 80 789
[33] Maroulis G and Bishop D M 1985 Chem. Phys. 96 409
[34] Pluta T, Sadlej A J and Bartlett R J 1988 Chem. Phys. Lett. 143 91
[35] Diercksen G H F and Hernández A J 1992 J. Mol. Struct. (Theochem) 254 191
[36] Christiansen O, Hattig C and Gauss J 1998 J. Chem. Phys. 109 4745
[37] Taylor J M, Dalgarno A and Babb J F 1999 Phys. Rev. A 60 R2630
[38] Jacobson P L, Komara R A, Sturrus W G and Lundeen S R 2000 Phys. Rev. A 62 012509
[39] Weck G, Milet A, Moszynski R and Kochanski E 2002 J. Mol. Struct. (Theochem) 591 141
[40] Weck G, Milet A, Moszynski R and Kochanski E 2004 J. Comput. Methods Sci. Eng. 4 501
[41] Salazar M C, Lugo I, Hernández A J and Manzanares I C 2006 Theor. Chem. Acc. 115 246
[42] Cukras J, Antuśek A, Holka F and Sadlej J 2009 Chem. Phys. Lett. 474 258
[43] Maroulis G 1988 Z. Naturforsch 43 419
[44] Wang W, Wu Y, Rong M, Ehn L and Cernuśak I 2012 J. Phys. D: Appl. Phys. 45 285201
[45] Wang W, Yan J D, Rong M, Murphy A B and Spencer J W 2012 Plasma Chem. Plasma Process. 32 495
[46] Lau K C, Deshpande M and Pandey R 2005 Int. J. Quantum Chem. 102 656
[47] Lau K C, Deshpande M, Pati R and Pandey R 2005 Int. J. Quantum Chem. 103 866
[48] Guliamov O, Kronik L and Martin J M L 2007 J. Phys. Chem. A 111 2028
[49] Otero N, Alsenoy C V, Karamanis P and Pouchan C 2013 Comput. Theor. Chem. 1021 114
[50] Xing X, Hermann A, Kuang X, Ju M, Lu C, Jin Y, Xia X and Maroulis G 2016 Sci. Rep. 6 19656
[51] Das A K, Ray D and Mukherjee P K 1992 Theor. Chim. Acta 82 223
[52] Gould H and Miller T M 2005 Adv. Atom. Mol. Opt. Phys. 51 343
[53] Barrett M D, Arnold K J and Safronova M S 2019 Phys. Rev. A 100 043418
[54] Ma X, Zhang S, Wen W, Huang Z, Hu Z, Guo D, Gao J, Najjari B, Xu S, Yan S, Yao K, Zhang R, Gao Y and Zhu X 2022 Chin. Phys. B 31 093401
[55] Mayer J E and Mayer M G 1933 Phys. Rev. 43 605
[56] Mei X, Zhou W, Zhong Z and Qiao H 2020 Chin. Phys. B 29 043101
[57] Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F and Capitelli M 2007 Chem. Phys. Lett. 445 133
[58] Keasler S J, Kim H and Chen B 2010 J. Phys. Chem. A 114 4595
[59] Gould T and Bučko T 2016 J. Chem. Theory Comput. 12 3603
[60] Wineland D J and Leibfried D 2011 Laser Phys. Lett. 8 175
[61] Bruzewicz C D, Chiaverini J, McConnell R and Sage J M 2019 Appl. Phys. Rev. 6 021314
[62] Cheng M, Brown J M, Rosmus P, Linguerri R, Komiha N and Myers E G 2007 Phys. Rev. A 75 012502
[63] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H, Tang L Y and Gao K L 2015 Chin. Phys. B 24 039501
[64] Alpher R A and White D R 1959 Phys. Fluids 2 162
[65] Meidanshahi F S, Madanipour K and Shokri B 2012 Opt. Commun. 285 453
[66] Tropina A A, Wu Y, Limbach C M and Miles R B 2019 J. Phys. D: Appl. Phys. 53 105201
[67] Takahashi Y, Yamada K and Abe T 2014 J. Spacecraft Rockets 51 430
[68] Takahashi Y, Yamada K and Abe T 2014 J. Spacecraft Rockets 51 1954
[69] Takahashi Y, Nakasato R and Oshima N 2016 Aerospace 3 2
[70] Kuverova V V, Adamson S O, Berlin A A, Bychkov V L, Dmitriev A V, Dyakov Y A, Eppelbaum L V, Golubkov G V, Lushnikov A A, Manzhelii M I, Morozov A N, Nabiev S S, Shapovalov V L, Suvorova A V and Golubkov M G 2019 Adv. Space Res. 64 1876
[71] Liang Y, Wu J, Li H, Tian R, Yuan C, Wang Y, Kudryavtsev A A, Zhou Z and Tian H 2019 Phys. Plasmas 26 043704
[72] Ramjatan S, Lani A, Boccelli S, Hove B V, Karatekin O, Magin T and Thoemel J 2020 J. Fluid Mech. 904 A26
[73] Mason E A and McDaniel E W 1988 Transport Properties of Ions in Gases (John Wiley & Sons)
[74] D'Angola A, Colonna G, Gorse C and Capitelli M 2008 Eur. Phys. J. D 46 129
[75] Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D and Pirani F 2009 Eur. Phys. J. D 54 607
[76] Keasler S J, Kim H and Chen B 2012 J. Chem. Phys. 137 174308
[77] Thakkar A J and McCarthy S P 2009 J. Chem. Phys. 131 134109
[78] Hati S and Datta D 1996 J. Phys. Chem. 100 4828
[79] Kornev A S, Chernov V E and Zon B A 2021 Opt. Spectrosc. 129 18
[80] Krishnamurti K 1959 Nature 183 1043
[81] Dmitrieva I K and Plindov G I 1983 Phys. Scr. 27 402
[82] Koch V and Andrae D 2011 Int. J. Quantum Chem. 111 891
[83] Koch V and Andrae D 2013 Eur. Phys. J. D 67 139
[84] Hellmann H G A 1937 Einfüuhrung in die Quantenchemie (Deuticke: Leipzig and Wien, in German)
[85] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[86] Adelman S A and Szabo A 1973 J. Chem. Phys. 58 687
[87] Ray D, Anton H, Schmidt P C and Weiss A 1996 Z. Naturforsch. 51 825
[88] Johnson III R D 2010 NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101 release 15a
[89] Alipour M and Mohajeri A 2011 Mol. Phys. 109 1439
[90] Wu T, Kalugina Y N and Thakkar A J 2015 Chem. Phys. Lett. 635 257
[91] Karne A S, Vaval N, Pal S, Vasquez-Perez J M, Koster A M and Calaminici P 2015 Chem. Phys. Lett. 635 168
[92] Verma P and Truhlar D G 2017 Phys. Chem. Chem. Phys. 19 12898
[93] Hait D and Head-Gordon M 2018 J. Chem. Theory Comput. 14 1969
[94] Sharipov A S and Loukhovitski B I 2019 Struct. Chem. 30 2057
[95] Zapata J C and McKemmish L K 2020 J. Phys. Chem. A 124 7538
[96] Grotjahn R, Lauter G J, Haasler M and Kaupp M 2020 J. Phys. Chem. A 124 8346
[97] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[98] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[99] Perdew J P 1986 Phys. Rev. B 33 8822
[100] Becke A D 1993 J. Chem. Phys. 98 5648
[101] Becke A D 1996 J. Chem. Phys. 104 1040
[102] Adamo C and Barone V 1998 J. Chem. Phys. 108 664
[103] Ernzerhof M and Perdew J P 1998 J. Chem. Phys. 109 3313
[104] Schmider H L and Becke A D 1998 J. Chem. Phys. 108 9624
[105] Hamprecht F A, Cohen A, Tozer D J and Handy N C 1998 J. Chem. Phys. 109 6264
[106] Wilson P J, Bradley T J and Tozer D J 2001 J. Chem. Phys. 115 9233
[107] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[108] Boese A D and Martin J M L 2004 J. Chem. Phys. 121 3405
[109] Xu X, Zhang Q, Muller R P and Goddard III W A 2005 J. Chem. Phys. 122 014105
[110] Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215
[111] Blair S A and Thakkar A J 2014 J. Chem. Phys. 141 074306
[112] Sharipov A S, Loukhovitski B I, Pelevkin A V, Kobtsev V D and Kozlov D N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 045101
[113] Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796
[114] Cammi R, Cossi M and Tomasi J 1996 J. Chem. Phys. 104 4611
[115] Colwell S M, Murray C W, Handy N C and Amos R D 1993 Chem. Phys. Lett. 210 261
[116] Granovsky A A Firefly V. 8.2.0 (accessed Jan 2019)
[117] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347
[118] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275
[119] Grimme S 2006 J. Chem. Phys. 124 034108
[120] Schwabe T and Grimme S 2007 Phys. Chem. Chem. Phys. 9 3397
[121] Thakkar A J and Wu T 2015 J. Chem. Phys. 143 144302
[122] Mohajeri A and Alipour M 2012 J. Chem. Phys. 136 124111
[123] Alipour M 2016 Chem. Phys. Lett. 644 163
[124] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[125] Medvedev M G, Bushmarinov I S, Sun J, Perdew J P and Lyssenko K A 2017 Science 355 aah5975
[126] Ranasinghe D S, Perera A and Bartlett R J 2017 J. Chem. Phys. 147 204103
[127] Kepp K P 2017 Science 356 496b
[128] Medvedev M G, Bushmarinov I S, Sun J, Perdew J P and Lyssenko K A 2017 Science 356 496c
[129] Wang Y, Wang X, Truhlar D G and He X 2017 J. Chem. Theory Comput. 13 6068
[130] Marjewski A A, Medvedev M G, Gerasimov I S, Panova M V, Perdew J P, Lyssenko K A and Dmitrienko A O 2018 Mendeleev Commun. 28 225
[131] Kornev A S, Suvorov K I, Chernov V E and Zon B A 2018 Chem. Phys. Lett. 711 42
[132] Kornev A S, Suvorov K I, Chernov V E, Kopytin I V and Zon B A 2019 Opt. Spectrosc. 127 798
[133] Hait D, Liang Y H and Head-Gordon M 2021 J. Chem. Phys. 154 074109
[134] Paschoal D and Dos Santos H F 2013 J. Mol. Model. 19 2079
[135] Starik A M, Savel'ev A M, Titova N S and Schumann U 2002 Aerosp. Sci. Technol. 6 63
[136] Starik A M, Savel'ev A M and Titova N S 2011 J. Eng. Phys. Thermophys. 84 100
[137] Knyazkov D A, Cherepanov A V, Kiselev V G, Gerasimov I E, Kasper T and Shmakov A G 2023 Proc. Combust. Inst. 39 1753
[138] Starik A M, Titova N S and Arsentiev I V 2010 Plasma Sources Sci. Technol. 19 015007
[139] Kadochnikov I N and Arsentiev I V 2018 J. Phys. D: Appl. Phys. 51 374001
[140] Jennings K R 1979 Phil. Trans. R. Soc. Lond. A 293 125
[141] Kossyi I A, Kostinsky A Y, Matveyev A A and Silakov V P 1992 Plasma Sources Sci. Technol. 1 207
[142] McLain J L, Poterya V, Molek C D, Babcock L M and Adams N G 2004 J. Phys. Chem. A 108 6704
[143] Tanarro I, Herrero V J, Islyaikin A M, Méendez, Tabarées F L and Tafalla D 2007 J. Phys. Chem. A 111 9003
[144] Shkurenkov I, Burnette D, Lempert W R and Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003
[145] Ishanov S A and Medvedev V V 2005 J. Eng. Phys. Thermophys. 78 1071
[146] Dashkevich Z V, Ivanova V E, Sergienko T I and Kozelov B V 2017 Cosmic Res. 55 88
[147] Le Teuff Y H, Millar T J and Markwick A J 2000 Astron. Astrophys. Suppl. Ser. 146 157
[148] Vinogradov A V, Pustovalov V V and Shevel'ko V P 1973 Sov. Phys. - JETP 36 252
[149] Dmitrieva I K and Plindov G I 1982 J. Physique 43 1599
[150] Kaplan A D, Santra B, Bhattarai P, Wagle K, Chowdhury S T R, Bhetwal P, Yu J, Tang H, Burke K, Levy M and Perdew J P 2020 J. Chem. Phys. 153 074114
[151] Benichou E, Antoine R, Rayane D, Vezin B, Dalby F W, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber B A, Rocco J C, Blundell S A and Guet C 1999 Phys. Rev. A 59 R1
[152] Assadollahzadeh B and Schwerdtfeger P 2009 J. Chem. Phys. 131 064306
[153] Jorge F E and da Costa Venâncio J R 2018 Chin. Phys. B 27 063102
[154] Gussoni M, Rui M and Zerbi G 1998 J. Mol. Struct. 447 163
[155] Ignatov S K and Masunov A E 2023 RSC Adv. 13 4065
[156] Jensen L, Astrand P O, Osted A, Kongsted J and Mikkelsen K V 2002 J. Chem. Phys. 116 4001
[157] Blair S A and Thakkar A J 2014 Chem. Phys. Lett. 610-611 163
[158] Cambi R, Cappelletti D, Liuti G and Pirani F 1991 J. Chem. Phys. 95 1852
[159] Putz M V, Russo N and Sicilia E 2003 J. Phys. Chem. A 107 5461
[160] Gould T 2016 J. Chem. Phys. 145 084308
[161] Tandon H, Chakraborty T and Suhag V 2019 J. Math. Chem. 57 2142
[162] Chaudhary S, Tandon H and Chakraborty T 2021 J. Korean Phys. Soc. 78 1101
[163] Szabó P, Góger S, Charry J, Karimpour M R, Fedorov D V and Tkatchenko A 2022 Phys. Rev. Lett. 128 070602
[164] Kvåseth T O 1985 Am. Stat. 39 279
[165] Carstensen H H and Dean A M 2007 Comprehensive Chemical Kinetics (Ed. by Carr R W) Ch. 4. Modeling Chemical Reactions (Elsevier) pp. 101-184
[1] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications
Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉). Chin. Phys. B, 2023, 32(9): 097501.
[4] Adsorption structure of macrocyclic energetic molecule DOATF on Au(111)
Xiao Chang(常霄), Li Huang(黄立), Yixuan Gao (高艺璇), Changjiang Yu(于长江), Yun Cao(曹云), Long Lv(吕龙), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 090701.
[5] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[6] Nonlinear modes coupling of trapped spin-orbit coupled spin-1 Bose-Einstein condensates
Jie Wang(王杰), Jun-Cheng Liang(梁俊成), Zi-Fa Yu(鱼自发), An-Qing Zhang(张安庆), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2023, 32(9): 090305.
[7] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适), Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[8] Experimental and theoretical investigations of the photoelectrochemical and photo-Fenton properties of Co-doped FeOCl
Jin-Huan Ma(马金环), Zhi-Qiang Wei(魏智强), Mei-Jie Ding(丁梅杰), Ji-Wei Zhao(赵继威), and Cheng-Gong Lu(路承功). Chin. Phys. B, 2023, 32(9): 097202.
[9] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[10] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[11] A kinetic description of the impact of agent competence and psychological factors on investment decision-making
Chunhua Hu(胡春华) and Hongjing Chen(陈弘婧). Chin. Phys. B, 2023, 32(8): 088901.
[12] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[13] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[14] High-order Hamiltonian obtained by Foldy-Wouthuysen transformation up to the order of mα8
Tong Chen(陈彤), Xuesong Mei(梅雪松), Wanping Zhou(周挽平), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2023, 32(8): 083101.
[15] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
No Suggested Reading articles found!