Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 083201    DOI: 10.1088/1674-1056/accb46
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

L-shell x-ray fluorescence relative intensities for elements with 62 ≤ Z ≤ 83 at 18 keV and 23 keV by synchrotron radiation

M Alqadi, S AL-Humaidi, H Alkhateeb, and F Alzoubi
Department of Physics, Jordan University of Science and Technology, Irbid, Jordan
Abstract  The relative intensities of L-subshell x-ray fluorescence (XRF) for elements with atomic numbers 62 ≤ Z ≤ 83 were measured at two excitation energies, 18 keV and 23 keV, using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East (SESAME), Jordan. The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri. The experimental and theoretical results are in agreement. In this work, L XRF relative intensities for the elements Sm, Gd, Tb, Er, Ta, W, Re, Hg, Pb and Bi at energies of 18 keV and 23 keV were measured.
Keywords:  L shell      x-ray fluorescence (XRF)      relative intensities      synchrotron radiation  
Received:  25 January 2023      Revised:  03 April 2023      Accepted manuscript online:  07 April 2023
PACS:  32.30.Rj (X-ray spectra)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  32.70.Fw (Absolute and relative intensities)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: This work was supported by the Jordan University of Science and Technology (Grant No.20180167) and the SESAME Synchrotron Center Jordan (Grant No.20185004).
Corresponding Authors:  M Alqadi     E-mail:  malqadi@just.edu.jo

Cite this article: 

M Alqadi, S AL-Humaidi, H Alkhateeb, and F Alzoubi L-shell x-ray fluorescence relative intensities for elements with 62 ≤ Z ≤ 83 at 18 keV and 23 keV by synchrotron radiation 2023 Chin. Phys. B 32 083201

[1] Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, Brenker F and Vincze L 2012 Spectrochim. Acta Part B 67 32
[2] Darko and Tetteh G 1992 X-Ray Spectrom. 21 111
[3] Rao D, Cesareo R and Gigante G E 1995 Radiat. Phys. Chem. 46 17
[4] Demir L, Han I and Şahin M 2008 J. Electron Spectrosc. Relat. Phenom. 162 44
[5] Alqadi M, Alsenjlawi Y and Alzoubi F 2013 Radiat. Phys. Chem. 87 31
[6] Bansal H, Tiwari M and Mittal R 2017 Radiat. Phys. Chem. 139 22
[7] Ganly B, Haarlem Y and Tickner J 2016 X-Ray Spectrom. 45 233
[8] Hiremath G, Bennal A, Hosamani M, Badiger N, Trivedi A and Tiwari A 2021 X-Ray Spectrom. 50 37
[9] Campbell J 2003 At. Data Nucl. Data Tables 85 291
[10] S. Puri S, Mehta D, Chand B, Singh N and Trehan N 1993 X-Ray Spectrom. 22 358
[11] Harfouche M, Abdellatief M, Momani Y, Abbadi A, Al Najdawi M, Al Zoubi M, Aljamal B, Matalgah S, Khan L, Lausi A and Paolucci G 2022 J. Synchrotron Rad. 29 1107
[12] Close D, Bearse, Malanify J and Umbarger C 1973 Phys. Rev. A 8 1873
[13] Scofield J H 1973 Theoretical photoionization cross sections from 1 to 1500 keV, Lawrence Livermore Laboratory Report No, UCRL-51326
[14] Krause M O, Nestor C W, Sparks C J, Ricci E 1978 X-ray fluorescence cross sections for K and L x rays of the elements, Oak Ridge National Lab. Report No ORNL-5399 ORNL-5399
[15] Scofield J H 1974 At. Data Nucl. Data Tables. 14 121
[16] Puri S, Chand B, Mehta D, Garg M L, Singh N and Trehan P N 1995 At. Data Nucl. Data Tables 61 289
[17] Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S and Olsen K 2010 XCOM: Photon Cross Section Database (version 1.5)
[1] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[2] Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2019, 28(6): 066402.
[3] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[4] Structural stability of ultra-high temperature refractory material MoSi2 and Mo5Si3 under high pressure
Hao Liang(梁浩), Fang Peng(彭放), Cong Fan(樊聪), Qiang Zhang(张强), Jing Liu(刘景), Shi-Xue Guan(管诗雪). Chin. Phys. B, 2017, 26(5): 053101.
[5] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[6] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[7] High pressure x-ray diffraction techniques with synchrotron radiation
Jing Liu(刘景). Chin. Phys. B, 2016, 25(7): 076106.
[8] Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface
Zhang Shuang-Hong (张双红), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Wu Rui (吴蕊), Zhang Nian (张念), Lei Tao (雷涛), Liu Chen (刘晨), Kurash Ibrahim (奎热西·伊布拉欣). Chin. Phys. B, 2015, 24(2): 027901.
[9] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao (杨浩), Xuan Rui-Jiao (轩瑞娇), Hu Chun-Hong (胡春红), Duan Jing-Hao (段敬豪). Chin. Phys. B, 2014, 23(4): 048701.
[10] Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy
Zhang Kai (张凯), Li Dee (李德娥), Hong You-Li (洪友丽), Zhu Pei-Ping (朱佩平), Yuan Qing-Xi (袁清习), Huang Wan-Xia (黄万霞), Gao Kun (高昆), Zhou Hong-Zhang (周红章), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2013, 22(7): 076801.
[11] Polycapillary X-ray lens for secondary focusing Beijing synchrotron radiation source
Li Yu-De (李玉德), Lin Xiao-Yan (林晓燕), Liu Shi-Gang (刘世岗), He Jin-Long (何金龙), Guo Fei (郭非), Sun Tian-Xi (孙天希), Liu Peng (刘鹏). Chin. Phys. B, 2013, 22(4): 044103.
[12] Synchrotron radiation VUV double photoionization of some small molecules
Zhao Yu-Jie(赵玉杰), Shan Xiao-Bin(单晓斌), Sheng Liu-Si(盛六四), Wang Zhen-Ya(王振亚), Zhang Jie(张杰), and Yu Chun-Ri(余春日) . Chin. Phys. B, 2011, 20(4): 043201.
[13] Band alignment of Ga2O3/6H-SiC heterojunction
Chang Shao-Hui(常少辉), Chen Zhi-Zhan(陈之战), Huang Wei(黄维), Liu Xue-Chao(刘学超), Chen Bo-Yuan(陈博源), Li Zheng-Zheng(李铮铮), and Shi Er-Wei(施尔畏) . Chin. Phys. B, 2011, 20(11): 116101.
[14] Energy band alignment of PbTe/CdTe(111) interface determined by ultraviolet photoelectron spectra using synchrotron radiation
Cai Chun-Feng(蔡春锋), Wu Hui-Zhen(吴惠桢), Si Jian-Xiao(斯剑霄), Jin Shu-Qiang(金树强), Zhang Wen-Hua(张文华), Xu Yang(许杨), and Zhu Jun-Fa(朱骏发). Chin. Phys. B, 2010, 19(7): 077301.
[15] Preferred clusters in metallic glasses
Yang Liang(杨亮) and Guo Gu-Qing(郭古青). Chin. Phys. B, 2010, 19(12): 126101.
No Suggested Reading articles found!