CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Diamond/c-BN van der Waals heterostructure with modulated electronic structures |
Su-Na Jia(贾素娜)1, Gao-Xian Li(李高贤)1, Nan Gao(高楠)1,2,†, Shao-Heng Cheng(成绍恒)1,2,‡, and Hong-Dong Li(李红东)1,2,§ |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Shenzhen Research Institute, Jilin University, Shenzhen 518057, China |
|
|
Abstract The structural and electronic properties of (100), (110), and (111) diamond/cubic boron nitride (c-BN) heterostructures are systematically investigated by first principles calculation. The interface between diamond and c-BN shows the weak van der Waals interactions, which is confirmed by the interface distance and interface binding energy. The diamond/c-BN structures are the direct bandgap semiconductors with moderate bandgap values ranging from 0.647 eV to 2.948 eV. This work helps to promote the application of diamond in electronic and optoelectronic devices.
|
Received: 04 October 2022
Revised: 12 December 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
81.05.uj
|
(Diamond/nanocarbon composites)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101690001) and the National Natural Science Foundation of China (Grant Nos. 51972135 and 52172044). |
Corresponding Authors:
Nan Gao, Shao-Heng Cheng, Hong-Dong Li
E-mail: gaon@jlu.edu.cn;chengshaoheng@jlu.edu.cn;hdli@jlu.edu.cn
|
Cite this article:
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东) Diamond/c-BN van der Waals heterostructure with modulated electronic structures 2023 Chin. Phys. B 32 077301
|
[1] Nakamura J, Kabasawa E, Yamada N, Einaga Y, Saito D, Isshiki H, Yugo S and Perera R C C 2004 Phys. Rev. B 70 245111 [2] Yang N J, Yu S Y, Macpherson J V, Einaga Y, Zhao H Y, Zhao G H, Swain G M and Jiang X 2019 Chem. Soc. Rev. 48 157 [3] Chilleri J, Siddiqua P, Shur M S and O'Leary S K 2022 Appl. Phys. Lett. 120 122105 [4] Zhang W J, Chong Y M, He B, Bello I and Lee S T 2014 Cubic boron nitride films: properties and applications, In Comprehensive Hard Materials (Amsterdam: Elsevier) pp. 607-639 [5] Hirama K, Taniyasu Y, Yamamoto H and Kumakura K 2019 J. Appl. Phys. 125 115303 [6] Hirama K, Taniyasu Y, Karimoto S I, Yamamoto H and Kumakura K 2017 Appl. Phys. Express 10 035501 [7] Hirama K, Taniyasu Y, Karimoto S I, Krockenberger Y and Yamamoto H 2014 Appl. Phys. Lett. 104 092113 [8] Chen C L, Wang Z C, Kato T, Shibata N, Taniguchi T and Ikuhara Y 2015 Nat. Commun. 6 6327 [9] Zhang W J, Bello I, Lifshitz Y, Chan K M, Wu Y, Chan C Y, Meng X M and Lee S T 2004 Appl. Phys. Lett. 85 1344 [10] Shammas J, Yang Y, Wang X Y, Koeck F A M, McCartney M R, Smith D J and Nemanich R J 2017 Appl. Phys. Lett. 111 171604 [11] Wu K P, Gan L Y, Zhang L, Zhang P Z, Liu F, Fan J, Sang L W and Liao M Y 2020 Jpn. J. Appl. Phys. 59 090910 [12] Zhao D H, Gao W, Li Y J, Zhang Y Y and Yin H 2019 RSC Adv. 9 8435 [13] Raymakers J, Haenen K and Maes W 2019 J. Mater. Chem. C 7 10134 [14] Ma Z C, Gao N, Cheng S H, Liu J S, Yang M C, Wang P, Feng Z Y, Wang Q L and Li H D 2020 Chin. Phys. Lett. 37 046801 [15] He B, Ng T W, Lo M F, Lee C S and Zhang W J 2015 ACS Appl. Mater. Interfaces 7 9851 [16] Tian B, Li J Z, Chen M G, Dong H C and Zhang X X 2022 Adv. Sci. 9 2201324 [17] Shang J M, Qiao S, Fang J Z, Wen H Y and Wei Z M 2021 Chin. Phys. B 30 097507 [18] Xue J M, Sanchez Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P and Leroy B J 2011 Nat. Mater. 10 282 [19] Mirabedini P S, Debnath B, Neupane M R, Greaney P A, Birdwell A G, Ruzmetov D, Crawford K G, Shah P, Weil J and Ivanov T G 2020 Appl. Phys. Lett. 117 121901 [20] Liu Y, Huang Y and Duan X F 2019 Nature 567 323 [21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [22] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [24] Blöchl P E 1994 Phys. Rev. B 50 17953 [25] Gong M M, Liu Y N, Gao L L, Gao N and Li H D 2022 Phys. Chem. Chem. Phys. 24 16237 [26] Sque S J, Jones R and Briddon P R 2006 Phys. Rev. B 73 085313 [27] Sun Z L, Yang M C, Wang X T, Wang P, Zhang C L, Gao N and Li H D 2020 Phys. Chem. Chem. Phys. 22 8060 [28] Sun Z L, Gao N and Li H D 2020 J. Phys. Condens. Matter 32 265002 [29] Huang X Y, Lindgren E and Chelikowsky J R 2005 Phys. Rev. B 71 165328 [30] Shiraishi K 1990 J. Phys. Soc. Jpn. 59 3455 [31] Liu Y N, Zhang Q X, Zhang X, Gao N and Li H D 2022 Adv. Theory Simul. 5 2100460 [32] Kern G, Hafner J, Furthmüller J and Kresse G 1996 Surf. Sci. 352-354 745 [33] Peng C S, Zhou Y D, Zhang S S and Zhao Z Y 2021 Chin. Phys. B 30 017101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|