CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference |
Wei Yu(余炜)1,2, Xiao Guo(郭潇)1,2, Yuwen Cai(蔡煜文)1,2, Xiaotian Yu(俞晓天)1,2, and Wenjie Liang(梁文杰)1,2,† |
1 Beijing National Center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The ability to control transport behaviors in nanostructure is crucial for usage as a fundamental research platform as well as a practical device. In this study, we report a gate-controlled crossover of electron transport behaviors using graphene nanoconstrictions as a platform. The observed transport properties span from Coulomb blockade-dominated single electron transmission to electron-wave interference-dominated quantum behavior. Such drastic modulation is achieved by utilizing a single back gate on a graphene nanoconstriction structure, where the size of nanostructure in the constriction and coupling strength of it to the electrodes can be tuned electrically. Our results indicate that electrostatic field by gate voltage upon the confined nanostructure defines both the size of the nanoconstriction as well as its interaction to electrodes. Increasing gate voltage raises Fermi level to cross the energy profile in the nanoconstriction, resulting in decreased energy barriers which affect the size of nanoconstriction and transmissivity of electrons. The gate-tunable nanoconstriction device can therefore become a potential platform to study quantum critical behaviors and enrich electronic and spintronic devices.
|
Received: 16 March 2023
Revised: 12 April 2023
Accepted manuscript online: 22 April 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0200800), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB07030100), and the Sinopec Innovation Scheme (Grant No. A-527). |
Corresponding Authors:
Wenjie Liang
E-mail: wjliang@iphy.ac.cn
|
Cite this article:
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰) Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference 2023 Chin. Phys. B 32 077202
|
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [4] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49 [5] White C T and Todorov T N 1998 Nature 393 240 [6] Fang J H, Liu L W, Kong W J, Cai J Z and Lü L 2006 Chin. Phys. B 15 1071 [7] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [8] Goldhaber-Gordon D, Göres J, Kastner M A, Shtrikman H, Mahalu D and Meirav U 1998 Phys. Rev. Lett. 81 5225 [9] Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764 [10] Liang W J, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725 [11] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L and Ralph D C 2002 Nature 417 722 [12] Liang W, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665 [13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [14] Appenzeller J, Lin Y M, Knoch J and Avouris P 2004 Phys. Rev. Lett. 93 196805 [15] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Su Z, Guo G C, Jiang H W and Guo G P 2010 Appl. Phys. Lett. 97 262113 [16] Ionescu A M and Riel H 2011 Nature 479 329 [17] Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378 [18] Stampfer C, Güttinger J, Hellmüller S, Molitor F, Ensslin K and Ihn T 2009 Phys. Rev. Lett. 102 056403 [19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [20] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [21] Moser J and Bachtold A 2009 Appl. Phys. Lett. 95 173506 [22] Caneva S, Hermans M, Lee M, García-Fuente A, Watanabe K, Taniguchi T, Dekker C, Ferrer J, van der Zant H S J and Gehring P 2020 Nano Lett. 20 4924 [23] Gehring P, Sadeghi H, Sangtarash S, Lau C S, Liu J J, Ardavan A, Warner J H, Lambert C J, Briggs G A D and Mol J A 2016 Nano Lett. 16 4210 [24] Bischoff D, Libisch F, Burgdörfer J, Ihn T and Ensslin K 2014 Phys. Rev. B 90 115405 [25] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J and Sutter P 2015 ACS Nano 9 10612 [26] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989 [27] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [28] Standley B, Bao W, Zhang H, Bruck J, Lau C N and Bockrath M 2008 Nano Lett. 8 3345 [29] Sadeghi H, Mol J A, Lau C S, Briggs G A D, Warner J and Lambert C J 2015 Proc. Natl. Acad. Sci. USA 112 2658 [30] Ullmann K, Coto P B, Leitherer S, Molina-Ontoria A, Martin N, Thoss M and Weber H B 2015 Nano Lett 15 3512 [31] Sun H T, Jiang Z L, Xin N, Guo X F, Hou S M and Liao J H 2018 ChemPhysChem 19 2258 [32] Leturcq R, Stampfer C, Inderbitzin K, Durrer L, Hierold C, Mariani E, Schultz M G, von Oppen F and Ensslin K 2009 Nat. Phys. 5 327 [33] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C, Guo G P 2011 Chin. Phys. Lett. 28 067301 [34] Oksanen M, Uppstu A, Laitinen A, Cox D J, Craciun M F, Russo S, Harju A and Hakonen P 2014 Phys. Rev. B 89 121414 [35] Horsell D W, Savchenko A K, Tikhonenko F V, Kechedzhi K, Lerner I V and Fal'ko V I 2009 Solid State Commun. 149 1041 [36] Berezovsky J, Borunda M F, Heller E J and Westervelt R M 2010 Nanotechnology 21 274013 [37] Muñoz-Rojas F, Jacob D, Fernández-Rossier J and Palacios J J 2006 Phys. Rev. B 74 195417 [38] Huang L, Lai Y C, Ferry D K, Akis R and Goodnick S M 2009 J. Phys.: Condens. Matter 21 344203 [39] Motta C, Sánchez-Portal D and Trioni M I 2012 PCCP 14 10683 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|