Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068201    DOI: 10.1088/1674-1056/acc05d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations

Jing-Xuan Wang(王靖轩)1, Bao-Zhen Sun(孙宝珍)1,2,†, Mei Li(李梅)1, Mu-Sheng Wu(吴木生)1, and Bo Xu(徐波)1,‡
1 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China;
2 Institute of Advanced Scientific Research(iASR)&Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
Abstract  Garnet-type Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte for Li-ion batteries, but Li-dendrite's formation greatly limits the applications. In this paper, we systematically investigate the stability, electronic properties, and Li-ion mobility of the LLZO surface by the first-principles calculations. We consider the (110) and (001) slab structures with different terminations in the t- and c-LLZO. Our results indicate that both (110) and (001) surfaces prefer to form Li-rich termination due to their low surface energies for either t- or c-LLZO. Moreover, with the decrease of Li contents the stability of Li-rich surfaces is improved initially and degrades later. Unfortunately, the localized surface states at the Fermi level can induce the formation of metallic Li on the Li-rich surfaces. In comparison, Li/La-termination has a relatively low metallic Li formation tendency due to its rather low diffusion barrier. In fact, Li-ion can spontaneously migrate along path II (m Li3→Li2) on the Li/La-T(001) surface. In contrast, it is more difficult for Li-ion diffusion on the Li-T(001) surface, which has a minimum diffusion barrier of 0.50 eV. Interestingly, the minimum diffusion barrier decreases to 0.34 eV when removing four Li-ions from the Li-T(001) surface. Thus, our study suggests that by varying Li contents, the stability and Li-ion diffusion barrier of LLZO surfaces can be altered favorably. These advantages can inhibit the formation of metallic Li on the LLZO surfaces.
Keywords:  solid-state electrolyte      Li7La3Zr2O12 (LLZO) surface      Li-ion migration      first-principles calculations  
Received:  13 December 2022      Revised:  29 January 2023      Accepted manuscript online:  02 March 2023
PACS:  82.47.Aa (Lithium-ion batteries)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.66.Fn (Inorganic compounds)  
  68.35.Md (Surface thermodynamics, surface energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064015 and 12064014).
Corresponding Authors:  Bao-Zhen Sun, Bo Xu     E-mail:  bzsun@jxnu.edu.cn;bxu4@mail.ustc.edu.cn

Cite this article: 

Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波) Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations 2023 Chin. Phys. B 32 068201

[1] Armand M and Tarascon J M2008 Nature 451 652
[2] Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y and He X M 2018 Energy Stor. Mater. 10 246
[3] Goodenough J B and Park K S2013 J. Am. Chem. Soc. 135 1167
[4] Sun C W, Liu J, Gong Y D, Wilkinson D P and Zhang J J2017 Nano Energy 33 363
[5] Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y and Ceder G2015 Nat. Mater. 14 1026
[6] Goodenough J B and Kim Y2009 Chem. Mater. 22 587
[7] Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B and Kovacheva D2007 J. Power Sources 165 491
[8] Swiderska-Mocek A, Lewandowski A and Kurc B2011 J. Solid State Electrochem. 16 673
[9] Chai M, Jin Y D, Fang S H, Yang L, Hirano S I and Tachibana K2012 Electrochim. Acta 66 67
[10] Mizuno F, Hayashi A, Tadanaga K and Tatsumisago M2005 Adv. Mater. 17 918
[11] Knauth P2009 Solid State Ion. 180 911
[12] Takada K2013 Acta Mater. 61 759
[13] Thompson T, Yu S, Williams L, Schmidt R D, Garcia-Mendez R, Wolfenstine J, Allen J L, Kioupakis E, Siegel D J and Sakamoto J2017 ACS Energy Lett. 2 462
[14] Thangadurai V, Narayanan S and Pinzaru D2014 Chem. Soc. Rev. 43 4714
[15] Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y F, Thangadurai V and Hu L2020 Chem. Rev. 120 4257
[16] Murugan R, Thangadurai V and Weppner W2007 Angew. Chem. Int. Ed. Engl. 46 7778
[17] Wu B B, Wang S Y, Lochala J, Desrochers D, Liu B, Zhang W Q, Yang J H and Xiao J2018 Energy Environ. Sci. 11 1803
[18] Sharafi A, Haslam C G, Kerns R D, Wolfenstine J and Sakamoto J2017 J. Mater. Chem. A 5 21491
[19] Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P and Guillon O2016 ACS Appl. Mater. Interfaces 8 10617
[20] Hongahally B R, Ito T, Morimura T, Bekarevich R, Mitsuishi K and Yamada H2017 J. Power Sources 363 145
[21] Wu J F, Pang W K, Peterson V K, Wei L and Guo X2017 ACS Appl. Mater. Interfaces 9 12461
[22] Zhuang L B, Huang X, Lu Y, Tang J W, Zhou Y J, Ao X, Yang Y and Tian B B2021 Ceram. Int. 47 22768
[23] Miara L J, Ong S P, Mo Y, Richards W D, Park Y, Lee J M, Lee H S and Ceder G2013 Chem. Mater. 25 3048
[24] Miara L J, Richards W D, Wang Y E and Ceder G2015 Chem. Mater. 27 4040
[25] Samson A J, Hofstetter K, Bag S and Thangadurai V2019 Energy Environ. Sci. 12 2957
[26] Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O and Imanishi N2013 J. Electrochem. Soc. 160 A1690
[27] Garcia D F A, Bonilla M R, Llordes A, Carrasco J and Akhmatskaya E2019 ACS Appl. Mater. Interfaces 11 753
[28] Wang Y X, Huq A and Lai W2014 Solid State Ion. 255 39
[29] Meier K, Laino T and Curioni A2014 J. Phys. Chem. C 118 6668
[30] Xu M, Park M S, Lee J M, Kim T Y, Park Y S and Ma E 2012 Phys. Rev. B 85 052301
[31] Kresse G and Furthmuller J1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D1999 Phys. Rev. B 59 1758
[33] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[34] Perdew J P, Ernzerhof M and Burke K1996 J. Chem. Phys. 105 9982
[35] Monkhorst H J and Pack J D1976 Phys. Rev. B 13 5188
[36] Pack J D and Monkhorst H J1977 Phys. Rev. B 16 1748
[37] Henkelman G and Jónsson H2000 J. Chem. Phys. 113 9978
[38] Xu G, Zhong K, Zhang J M and Huang Z 2014 J. Appl. Phys. 116 063703
[39] He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M and Shi S Q2020 Sci. Data 7 151
[40] Geiger C A, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T and Weppner W2011 Inorg. Chem. 50 1089
[41] Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y and Akimoto J2011 Chem. Lett. 40 60
[42] Xie H, Alonso J A, Li Y T, Fernández-Díaz M T and Goodenough J B2011 Chem. Mater. 23 3587
[43] Canepa P, Dawson J A, Sai G G, Statham J M, Parker S C and Islam M S2018 Chem. Mater. 30 3019
[44] Tian H K, Xu B and Qi Y2018 J. Power Sources 392 79
[45] Gao B, Jalem R and Tateyama Y2020 ACS Appl. Mater. Interfaces 12 16350
[1] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[2] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[3] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!