INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations |
Jing-Xuan Wang(王靖轩)1, Bao-Zhen Sun(孙宝珍)1,2,†, Mei Li(李梅)1, Mu-Sheng Wu(吴木生)1, and Bo Xu(徐波)1,‡ |
1 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China; 2 Institute of Advanced Scientific Research(iASR)&Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract Garnet-type Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte for Li-ion batteries, but Li-dendrite's formation greatly limits the applications. In this paper, we systematically investigate the stability, electronic properties, and Li-ion mobility of the LLZO surface by the first-principles calculations. We consider the (110) and (001) slab structures with different terminations in the t- and c-LLZO. Our results indicate that both (110) and (001) surfaces prefer to form Li-rich termination due to their low surface energies for either t- or c-LLZO. Moreover, with the decrease of Li contents the stability of Li-rich surfaces is improved initially and degrades later. Unfortunately, the localized surface states at the Fermi level can induce the formation of metallic Li on the Li-rich surfaces. In comparison, Li/La-termination has a relatively low metallic Li formation tendency due to its rather low diffusion barrier. In fact, Li-ion can spontaneously migrate along path II (m Li3→Li2) on the Li/La-T(001) surface. In contrast, it is more difficult for Li-ion diffusion on the Li-T(001) surface, which has a minimum diffusion barrier of 0.50 eV. Interestingly, the minimum diffusion barrier decreases to 0.34 eV when removing four Li-ions from the Li-T(001) surface. Thus, our study suggests that by varying Li contents, the stability and Li-ion diffusion barrier of LLZO surfaces can be altered favorably. These advantages can inhibit the formation of metallic Li on the LLZO surfaces.
|
Received: 13 December 2022
Revised: 29 January 2023
Accepted manuscript online: 02 March 2023
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.66.Fn
|
(Inorganic compounds)
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064015 and 12064014). |
Corresponding Authors:
Bao-Zhen Sun, Bo Xu
E-mail: bzsun@jxnu.edu.cn;bxu4@mail.ustc.edu.cn
|
Cite this article:
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波) Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations 2023 Chin. Phys. B 32 068201
|
[1] Armand M and Tarascon J M2008 Nature 451 652 [2] Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y and He X M 2018 Energy Stor. Mater. 10 246 [3] Goodenough J B and Park K S2013 J. Am. Chem. Soc. 135 1167 [4] Sun C W, Liu J, Gong Y D, Wilkinson D P and Zhang J J2017 Nano Energy 33 363 [5] Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y and Ceder G2015 Nat. Mater. 14 1026 [6] Goodenough J B and Kim Y2009 Chem. Mater. 22 587 [7] Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B and Kovacheva D2007 J. Power Sources 165 491 [8] Swiderska-Mocek A, Lewandowski A and Kurc B2011 J. Solid State Electrochem. 16 673 [9] Chai M, Jin Y D, Fang S H, Yang L, Hirano S I and Tachibana K2012 Electrochim. Acta 66 67 [10] Mizuno F, Hayashi A, Tadanaga K and Tatsumisago M2005 Adv. Mater. 17 918 [11] Knauth P2009 Solid State Ion. 180 911 [12] Takada K2013 Acta Mater. 61 759 [13] Thompson T, Yu S, Williams L, Schmidt R D, Garcia-Mendez R, Wolfenstine J, Allen J L, Kioupakis E, Siegel D J and Sakamoto J2017 ACS Energy Lett. 2 462 [14] Thangadurai V, Narayanan S and Pinzaru D2014 Chem. Soc. Rev. 43 4714 [15] Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y F, Thangadurai V and Hu L2020 Chem. Rev. 120 4257 [16] Murugan R, Thangadurai V and Weppner W2007 Angew. Chem. Int. Ed. Engl. 46 7778 [17] Wu B B, Wang S Y, Lochala J, Desrochers D, Liu B, Zhang W Q, Yang J H and Xiao J2018 Energy Environ. Sci. 11 1803 [18] Sharafi A, Haslam C G, Kerns R D, Wolfenstine J and Sakamoto J2017 J. Mater. Chem. A 5 21491 [19] Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P and Guillon O2016 ACS Appl. Mater. Interfaces 8 10617 [20] Hongahally B R, Ito T, Morimura T, Bekarevich R, Mitsuishi K and Yamada H2017 J. Power Sources 363 145 [21] Wu J F, Pang W K, Peterson V K, Wei L and Guo X2017 ACS Appl. Mater. Interfaces 9 12461 [22] Zhuang L B, Huang X, Lu Y, Tang J W, Zhou Y J, Ao X, Yang Y and Tian B B2021 Ceram. Int. 47 22768 [23] Miara L J, Ong S P, Mo Y, Richards W D, Park Y, Lee J M, Lee H S and Ceder G2013 Chem. Mater. 25 3048 [24] Miara L J, Richards W D, Wang Y E and Ceder G2015 Chem. Mater. 27 4040 [25] Samson A J, Hofstetter K, Bag S and Thangadurai V2019 Energy Environ. Sci. 12 2957 [26] Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O and Imanishi N2013 J. Electrochem. Soc. 160 A1690 [27] Garcia D F A, Bonilla M R, Llordes A, Carrasco J and Akhmatskaya E2019 ACS Appl. Mater. Interfaces 11 753 [28] Wang Y X, Huq A and Lai W2014 Solid State Ion. 255 39 [29] Meier K, Laino T and Curioni A2014 J. Phys. Chem. C 118 6668 [30] Xu M, Park M S, Lee J M, Kim T Y, Park Y S and Ma E 2012 Phys. Rev. B 85 052301 [31] Kresse G and Furthmuller J1996 Phys. Rev. B 54 11169 [32] Kresse G and Joubert D1999 Phys. Rev. B 59 1758 [33] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865 [34] Perdew J P, Ernzerhof M and Burke K1996 J. Chem. Phys. 105 9982 [35] Monkhorst H J and Pack J D1976 Phys. Rev. B 13 5188 [36] Pack J D and Monkhorst H J1977 Phys. Rev. B 16 1748 [37] Henkelman G and Jónsson H2000 J. Chem. Phys. 113 9978 [38] Xu G, Zhong K, Zhang J M and Huang Z 2014 J. Appl. Phys. 116 063703 [39] He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M and Shi S Q2020 Sci. Data 7 151 [40] Geiger C A, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T and Weppner W2011 Inorg. Chem. 50 1089 [41] Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y and Akimoto J2011 Chem. Lett. 40 60 [42] Xie H, Alonso J A, Li Y T, Fernández-Díaz M T and Goodenough J B2011 Chem. Mater. 23 3587 [43] Canepa P, Dawson J A, Sai G G, Statham J M, Parker S C and Islam M S2018 Chem. Mater. 30 3019 [44] Tian H K, Xu B and Qi Y2018 J. Power Sources 392 79 [45] Gao B, Jalem R and Tateyama Y2020 ACS Appl. Mater. Interfaces 12 16350 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|