CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization |
Yuan Yuan(袁源)1, Lu-Jun Wei(魏陆军)2, Yu Lu(卢羽)1, Ruo-Bai Liu(刘若柏)1, Tian-Yu Liu(刘天宇)1, Jia-Rui Chen(陈家瑞)1, Biao You(游彪)1, Wei Zhang(张维)1, Di Wu(吴镝)1, and Jun Du(杜军)1,† |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 New Energy Technology Engineering Laboratory of Jiangsu Provence&School of Science, Nanjing University of Posts and Telecommunications(NUPT), Nanjing 210046, China |
|
|
Abstract Electric-field control of perpendicular magnetic anisotropy (PMA) is a feasible way to manipulate perpendicular magnetization, which is of great importance for realizing energy-efficient spintronics. Here, we propose a novel approach to accomplish this task at room temperature by resistive switching (RS) via electrochemical metallization (ECM) in a device with the stack of Si/SiO$_{2}$/Ta/Pt/Ag/Mn-doped ZnO (MZO)/Pt/Co/Pt/ITO. By applying certain voltages, the device could be set at high-resistance-state (HRS) and low-resistance-state (LRS), accompanied with a larger and a smaller coercivity ($H_{\rm C}$), respectively, which demonstrates a nonvolatile E-field control of PMA. Based on our previous studies and the present control experiments, the electric modulation of PMA can be briefly explained as follows. At LRS, the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich, leading to weakening of PMA and reduction of $H_{\rm C}$. In contrast, at HRS, most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich, causing partial recovery of PMA and an increase of $H_{\rm C}$. This work provides a new clue to designing low-power spintronic devices based on PMA films.
|
Received: 11 January 2023
Revised: 15 February 2023
Accepted manuscript online: 22 February 2023
|
PACS:
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602) and the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169). |
Corresponding Authors:
Jun Du
E-mail: jdu@nju.edu.cn
|
Cite this article:
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军) Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization 2023 Chin. Phys. B 32 067505
|
[1] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 J. Appl. Phys. 91 5246 [2] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721 [3] Fang L H, Ali S S and Han X F 2014 Chin. Phys. B 23 077501 [4] Li Z, Zhang K, Du A, Zhang H C, Chen W B, Xu N, Hao R R, Yan S S, Zhao W S and Leng Q W 2023 Chin. Phys. B 32 026803 [5] Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501 [6] Mihajlovic G, Smith N, Santos T, Li J, Tran M, Carey M, Terris B D and Katine J A 2020 Phys. Rev. Appl. 13 024004 [7] Xie X J, Zhao X N, Dong Y N, Qu X L, Zheng K, Han X D, Han X, Fan Y B, Bai L H, Chen Y X, Dai Y Y, Tian Y F and Yan S S 2021 Nat. Commun. 12 2473 [8] Kim H J, Moon K W, Tran B X, Yoon S, Kim C, Yang S, Ha J H, An K, Ju T S, Hong J I and Hwang C 2022 Adv. Funct. Mater. 32 2112561 [9] Chen A T, Zheng D X, Fang B, Wen Y, Li Y and Zhang X X 2022 J. Magn. Magn. Mater. 562 169753 [10] Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349 [11] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158 [12] Gilbert D A, Olamit J, Dumas R K, Kirby B J, Grutter A J, Maranville B B, Arenholz E, Borchers J A and Liu K 2016 Nat. Commun. 7 11050 [13] Gilbert D A, Grutter A J, Arenholz E, Liu K, Kirby B J, Borchers J A and Maranville B B 2016 Nat. Commun. 7 12264 [14] Leighton C 2019 Nat. Mater. 18 13 [15] Wang W G, Li M G, Hageman S and Chien C L 2012 Nat. Mater. 11 64 [16] Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E te and Wang W G 2014 Phys. Rev. Lett. 113 267202 [17] Tan A J, Huang M T, Avci C O, Buttner F, Mann M, Hu W, Mazzoli C, Wilkins S, Tuller H L and Beach G S D 2019 Nat. Mater. 18 35 [18] Chen G, Ophus C, Quintana A, Kwon H, Won C, Ding H, Wu Y, Schmid A K and Liu K 2022 Nat. Commun. 13 1350 [19] Gopman D B, Dennis C L, Chen P J, Iunin Y L, Finkel P, Staruch M and Shull R D 2016 Sci. Rep. 6 27774 [20] Goiriena-Goikoetxea M, Xiao Z, El-Ghazaly A, Stan C V, Chatterjee J, Ceballos A, Pattabi A, Tamura N, Conte R Lo, Hellman F, Candler R and Bokor J 2021 Phys. Rev. Mater. 5 024401 [21] Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515 [22] Xiong Y X, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H and Du Y W 2014 Appl. Phys. Lett. 105 032410 [23] Munjal S and Khare N 2017 Sci. Rep. 7 12427 [24] Munjal S and Khare N 2018 Appl. Phys. Lett. 113 243501 [25] Wei L J, Hu Z Z, Du G X, Yuan Y, Wang J, Tu H Q, You B, Zhou S M, Qu J T, Liu H W, Zheng R K, Hu Y and Du J 2018 Adv. Mater. 30 1801885 [26] Yuan Y, Qu J T, Wei L J, Zheng R K, Lu Y, Liu R B, Liu T Y, Chen J R, Luo L C, Du G X, You B, Zhang W, Zhang C Y, Zhu L, Hu Y, Xu Q Y and Du J 2022 ACS Appl. Mater. Interfaces 14 26941 [27] Neumann F, Genenko Y A, Schmechel R and Seggern H V 2005 Synth. Met. 150 291 [28] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636 [29] Liu Q, Sun J, Lv H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844 [30] Sahu D P and Jammalamadaka S N 2017 Sci. Rep. 7 17224 [31] Chandrasekaran S, Simanjuntak F M and Tseng T Y 2018 Jpn. J. Appl. Phys. 57 04FE10 [32] Shepley P M, Rushforth A W, Wang M, Burnell G and Moore T A 2015 Sci. Rep. 5 7921 [33] Chen Y Y, Shi Z, Zhou S M, Rui W B and Du J 2013 Chin. Phys. B 22 067504 [34] Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamula K, Kobayashi K and Ono T 2012 Nat. Commun. 3 888 [35] Lavrijsen R, Hartmann D M F, Brink A V D, Yin Y, Barcones B, Duine R A, Verheijen M A, Swagten H J M and Koopmans B 2015 Phys. Rev. B 91 104414 [36] Bollero A, Baltz V, Buda-Prejbeanu L D, Rodmacq B and Dieny B 2011 Phys. Rev. B 84 094423 [37] Banno N, Sakamoto T, Iguchi N, Sunamura H, Terabe K, Hasegawa T and Aono M 2008 IEEE Trans. Electron Dev. 55 3283 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|