Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067505    DOI: 10.1088/1674-1056/acbde8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization

Yuan Yuan(袁源)1, Lu-Jun Wei(魏陆军)2, Yu Lu(卢羽)1, Ruo-Bai Liu(刘若柏)1, Tian-Yu Liu(刘天宇)1, Jia-Rui Chen(陈家瑞)1, Biao You(游彪)1, Wei Zhang(张维)1, Di Wu(吴镝)1, and Jun Du(杜军)1,†
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 New Energy Technology Engineering Laboratory of Jiangsu Provence&School of Science, Nanjing University of Posts and Telecommunications(NUPT), Nanjing 210046, China
Abstract  Electric-field control of perpendicular magnetic anisotropy (PMA) is a feasible way to manipulate perpendicular magnetization, which is of great importance for realizing energy-efficient spintronics. Here, we propose a novel approach to accomplish this task at room temperature by resistive switching (RS) via electrochemical metallization (ECM) in a device with the stack of Si/SiO$_{2}$/Ta/Pt/Ag/Mn-doped ZnO (MZO)/Pt/Co/Pt/ITO. By applying certain voltages, the device could be set at high-resistance-state (HRS) and low-resistance-state (LRS), accompanied with a larger and a smaller coercivity ($H_{\rm C}$), respectively, which demonstrates a nonvolatile E-field control of PMA. Based on our previous studies and the present control experiments, the electric modulation of PMA can be briefly explained as follows. At LRS, the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich, leading to weakening of PMA and reduction of $H_{\rm C}$. In contrast, at HRS, most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich, causing partial recovery of PMA and an increase of $H_{\rm C}$. This work provides a new clue to designing low-power spintronic devices based on PMA films.
Keywords:  electric-field control      resistive switching      perpendicular magnetic anisotropy      electrochemical metallization      magnetoelectric random access memory  
Received:  11 January 2023      Revised:  15 February 2023      Accepted manuscript online:  22 February 2023
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Gw (Magnetic anisotropy)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602) and the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169).
Corresponding Authors:  Jun Du     E-mail:  jdu@nju.edu.cn

Cite this article: 

Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军) Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization 2023 Chin. Phys. B 32 067505

[1] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 J. Appl. Phys. 91 5246
[2] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[3] Fang L H, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
[4] Li Z, Zhang K, Du A, Zhang H C, Chen W B, Xu N, Hao R R, Yan S S, Zhao W S and Leng Q W 2023 Chin. Phys. B 32 026803
[5] Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501
[6] Mihajlovic G, Smith N, Santos T, Li J, Tran M, Carey M, Terris B D and Katine J A 2020 Phys. Rev. Appl. 13 024004
[7] Xie X J, Zhao X N, Dong Y N, Qu X L, Zheng K, Han X D, Han X, Fan Y B, Bai L H, Chen Y X, Dai Y Y, Tian Y F and Yan S S 2021 Nat. Commun. 12 2473
[8] Kim H J, Moon K W, Tran B X, Yoon S, Kim C, Yang S, Ha J H, An K, Ju T S, Hong J I and Hwang C 2022 Adv. Funct. Mater. 32 2112561
[9] Chen A T, Zheng D X, Fang B, Wen Y, Li Y and Zhang X X 2022 J. Magn. Magn. Mater. 562 169753
[10] Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349
[11] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158
[12] Gilbert D A, Olamit J, Dumas R K, Kirby B J, Grutter A J, Maranville B B, Arenholz E, Borchers J A and Liu K 2016 Nat. Commun. 7 11050
[13] Gilbert D A, Grutter A J, Arenholz E, Liu K, Kirby B J, Borchers J A and Maranville B B 2016 Nat. Commun. 7 12264
[14] Leighton C 2019 Nat. Mater. 18 13
[15] Wang W G, Li M G, Hageman S and Chien C L 2012 Nat. Mater. 11 64
[16] Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E te and Wang W G 2014 Phys. Rev. Lett. 113 267202
[17] Tan A J, Huang M T, Avci C O, Buttner F, Mann M, Hu W, Mazzoli C, Wilkins S, Tuller H L and Beach G S D 2019 Nat. Mater. 18 35
[18] Chen G, Ophus C, Quintana A, Kwon H, Won C, Ding H, Wu Y, Schmid A K and Liu K 2022 Nat. Commun. 13 1350
[19] Gopman D B, Dennis C L, Chen P J, Iunin Y L, Finkel P, Staruch M and Shull R D 2016 Sci. Rep. 6 27774
[20] Goiriena-Goikoetxea M, Xiao Z, El-Ghazaly A, Stan C V, Chatterjee J, Ceballos A, Pattabi A, Tamura N, Conte R Lo, Hellman F, Candler R and Bokor J 2021 Phys. Rev. Mater. 5 024401
[21] Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515
[22] Xiong Y X, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H and Du Y W 2014 Appl. Phys. Lett. 105 032410
[23] Munjal S and Khare N 2017 Sci. Rep. 7 12427
[24] Munjal S and Khare N 2018 Appl. Phys. Lett. 113 243501
[25] Wei L J, Hu Z Z, Du G X, Yuan Y, Wang J, Tu H Q, You B, Zhou S M, Qu J T, Liu H W, Zheng R K, Hu Y and Du J 2018 Adv. Mater. 30 1801885
[26] Yuan Y, Qu J T, Wei L J, Zheng R K, Lu Y, Liu R B, Liu T Y, Chen J R, Luo L C, Du G X, You B, Zhang W, Zhang C Y, Zhu L, Hu Y, Xu Q Y and Du J 2022 ACS Appl. Mater. Interfaces 14 26941
[27] Neumann F, Genenko Y A, Schmechel R and Seggern H V 2005 Synth. Met. 150 291
[28] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[29] Liu Q, Sun J, Lv H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844
[30] Sahu D P and Jammalamadaka S N 2017 Sci. Rep. 7 17224
[31] Chandrasekaran S, Simanjuntak F M and Tseng T Y 2018 Jpn. J. Appl. Phys. 57 04FE10
[32] Shepley P M, Rushforth A W, Wang M, Burnell G and Moore T A 2015 Sci. Rep. 5 7921
[33] Chen Y Y, Shi Z, Zhou S M, Rui W B and Du J 2013 Chin. Phys. B 22 067504
[34] Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamula K, Kobayashi K and Ono T 2012 Nat. Commun. 3 888
[35] Lavrijsen R, Hartmann D M F, Brink A V D, Yin Y, Barcones B, Duine R A, Verheijen M A, Swagten H J M and Koopmans B 2015 Phys. Rev. B 91 104414
[36] Bollero A, Baltz V, Buda-Prejbeanu L D, Rodmacq B and Dieny B 2011 Phys. Rev. B 84 094423
[37] Banno N, Sakamoto T, Iguchi N, Sunamura H, Terabe K, Hasegawa T and Aono M 2008 IEEE Trans. Electron Dev. 55 3283
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[6] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[7] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[8] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[9] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[10] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[11] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[12] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[13] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[14] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[15] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
No Suggested Reading articles found!