Abstract The fascinating properties arising from the interaction between different ferroic states of two-dimensional (2D) materials have inspired tremendous research interest in the past few years. Under the first-principles calculations, we predict the coexistence of antiferromagnetic and ferroelastic states in VO (, Br, I) monolayers. The results illustrate that the VO monolayers exhibit indirect bandgap characteristics, , their gaps decrease with the halide elements changing from Cl to I. The ground states of all these VO monolayers are antiferromagnetic (AFM) with the magnetic moments contributed by the V 3d electrons. Furthermore, the magnetic ground state changing from AFM to ferromagnetism (FM) can be realized by doping carriers. In addition, the moderate ferroelastic transition barrier and reversible switching signal ensure their high performances of nonvolatile memory devices. Our findings not only offer an ideal platform for investigating the multiferroic properties, but also provide candidate materials for potential applications in spintronics.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104344 and 61674003), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2021QA096), the Science and Technology Development Program of Weifang High-tech Industrial Development Zone, China (Grant No. 2020KJHM03), and the Doctoral Research Start-up Foundation of Weifang University, China (Grant No. 2021BS05).
Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐) Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching 2023 Chin. Phys. B 32 067701
[1] Li L and Wu M H2017 ACS Nano11 6382 [2] Tang X and Kou L Z2019 J. Phys. Chem. Lett.10 6634 [3] Zhong T T, Li X Y, Wu M H and Liu J M2020 Nat. Sci. Rev.7 373 [4] Jia F H, Xu S W, Zhao G D, Liu C and Ren W2020 Phys. Rev. B101 144106 [5] You H P, Ding N, Chen J and Dong S2020 Phys. Chem. Chem. Phys.22 24109 [6] Hippel A V, Breckenridge R G, Chesley F G and Tisza L1946 Ind. Eng. Chem.38 1097 [7] Feng X K, Ma X K, Sun L, Liu J and Zhao M W2020 J. Mater. Chem. C8 13982 [8] Spaldin N A and Fiebig M2005 Science309 391 [9] Wang P S, Ren W, Bellaiche L and Xiang H J2015 Phys. Rev. Lett.114 147204 [10] Taz H, Prasad B, Huang Y L, Chen Z H, Hsu S L, Xu R J, Thakare V, Sakthivel T S, Liu C Z, Hettick M, Mukherjee R, Seal S. Martin L W, Javey A, Duscher G, Ramesh R and Kalyanaraman R2020 Sci. Rep.10 3583 [11] Cao L M, Deng X H, Zhou G H, Liang S J, Nguyen C V, Ang L K and Ang Y S2022 Phys. Rev. B105 165302 [12] Wang H and Qian X F2017 2D Mater.4 015042 [13] Wu M and Zeng X C2016 Nano Lett.16 3236 [14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D2017 Nature546 270 [15] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X2017 Nature546 265 [16] Cheng W R, He J F, Yao T, Sun Z H, Jiang Y, Liu Q H, Jiang S, Hu F C, Xie Z, He B, Yan W S and Wei S Q2014 J. Am. Chem. Soc.136 10393 [17] Miao N H, Xu B, Zhu L G, Zhou J and Sun Z M2018 J. Am. Chem. Soc.140 2417 [18] Qing X M, Li H, Zhong C G, Zhou P X, Dong Z C and Liu J M2020 Phys. Chem. Chem. Phys.22 17255 [19] Guo Y L, Zhang Y H, Yuan S J, Wang B and Wang J L2018 Nanoscale10 18036 [20] Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D2018 Nano Lett.18 7658 [21] Jiang Z, Wang P, Xing J P, Jiang X and Zhao J J2018 ACS Appl. Mater. Interfaces10 39032 [22] Yang H C, Song M Q, Li Y D, Guo Y W and Han K2022 Physica E143 115341 [23] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y2018 Rev. Mod. Phys.90 015005 [24] Jungwirth T, Marti X, Wadley P and Wunderlich J2016 Nat. Nanotechnol.11 231 [25] He J J, Ding G Q, Zhong C Y, Li S, Li D F and Zhang G2019 Nanoscale11 356 [26] Lv H Y, Lu W J, Luo X, Zhu X B and Sun Y P2019 Phys. Rev. B99 134416 [27] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero and Xu X D2018 Nat. Nanotechnol.13 544 [28] Shen S Y, Wu Q, Dai Y, Huang B B and Ma Y D2021 Phys. Rev. B104 064446 [29] Weston L, Cui X Y, Ringer S P and Stampfl C2016 Phys. Rev. B93 165210 [30] Tan H X, Li M L, Liu H T, Liu Z R, Li Y C and Duan W H2019 Phys. Rev. B99 195434 [31] Hill N A2000 J. Phys. Chem. B104 6694 [32] Spaldin N A, Cheong S W and Ramesh R2010 Phys. Today6 38 [33] Kou L Z, Ma Y D, Tang C, Sun Z Q, Du A J and Chen C F2016 Nano Lett.16 7910 [34] Tang X and Kou L Z2019 J. Phys. Chem. Lett.10 6634 [35] Burch K S, Mandrus D and Park J G2018 Nature563 47 [36] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J2018 Nat. Nanotechnol.13 549 [37] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y2019 Sci. Adv.5 eaaw5685 [38] Kresse G and Furthmüller J1996 Phys. Rev. B54 11169 [39] Kresse G and Furthmüller J1996 Comput. Mater. Sci.6 15 [40] Perdew J P and Wang Y1992 Phys. Rev. B45 13244 [41] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett.77 3865 [42] Blöchl P1994 Phys. Rev. B50 17953 [43] Glawion S, Scholz M R, Zhang Y Z, Valentí R, Saha-Dasgupta T, Klemm M, Hemberger J, Horn S, Sing M and Claessen R2009 Phys. Rev. B80 155119 [44] Komarek A C, Taetz T, Fernández-Díaz M T, Trots D M, Möller A and Braden M2009 Phys. Rev. B79 104425 [45] Henkelman G, Uberuaga B P and Jónsson H2000 J. Chem. Phys.113 9901 [46] Gonze X and Lee C1997 Phys. Rev. B55 10355 [47] Ekholm M, Schönleber A and Smaalen S V2019 J. Phys.: Condens. Matter31 325502 [48] Ai H Q, Song X H, Qi S Y, Li W F and Zhao M W2019 Nanoscale11 1103 [49] Song R, Wang B L, Feng K, Wang L and Liang D D2022 Acta Phys. Sin.71 037101 (in Chinese) [50] Zhang Y, Lin L F, Moreo A, Alvarez G and Dagotto E2021 Phys. Rev. B103 L121114 [51] Abdollahi M and Tagani M B2020 J. Mater. Chem. C8 13286 [52] Xiao W Z, Xu L, Xiao G, Wang L L and Dai X Y2020 Phys. Chem. Chem. Phys.22 14503 [53] Anderson P W1950 Phys. Rev.79 350 [54] Goodenough J B1955 Phys. Rev.100 564 [55] Kanamori J1960 J Appl. Phys.31 S14 [56] Li W B and Li J2016 Nat. Commun.7 10843 [57] Xu X L, Ma Y D, Huang B B and Dai Y2019 Phys. Chem. Chem. Phys.21 7440 [58] Xu B, Xiang H, Yin J, Xia Y D and Liu Z G2017 Nanoscale10 215 [59] Wang H D, Li X X, Sun J Y, Liu Z and Yang J L2017 2D Mater.4 045020 [60] Xu B, Li S C, Jiang K, Yin J, Liu Z G, Cheng Y C and Zhong W Y2020 Appl. Phys. Lett.116 052403 [61] Hu M L, Xu S W, Liu C, Zhao G D, Yu J H and Ren W2020 Nanoscale12 24237 [62] Zhang S H and Liu B G2018 Nanoscale10 5990 [63] Wang C S, Ke X X, Wang J J, Liang R R, Luo Z L, Tian Y, Yi D, Zhang Q T, Wang J, Han X F, Tendeloo G V, Chen L Q, Nan C W, Ramesh R and Zhang J X2016 Nat. Commun.7 10636
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.