Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066802    DOI: 10.1088/1674-1056/acc80d
RAPID COMMUNICATION Prev   Next  

Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates

Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平)
Key Laboratory of Polar Materials and Devices(MOE) and Department of Electronics, East China Normal University, Shanghai 200241, China
Abstract  Materials' properties may differ in the thin-film form, especially for epitaxial ultra-thin films, where the substrates play an important role in their deviation from the bulk quality. Here by molecular beam epitaxy (MBE) and scanning tunneling microscopy/spectroscopy, we investigate the growth kinetics of ultra-thin tellurium (Te) films on SrTiO3 (STO) (001). The MBE growth of Te films usually exhibits Volmer-Weber (VW) island growth mode and no a-few-monolayer film with full coverage has been reported. The absence of wetting-layer formation in the VW growth mode of Te on STO (001) is resulted from its low diffusion barriers as well as its relatively higher surface energy compared with those of the substrate and the interface. Here we circumvent these limiting factors and achieve the growth of ultra-thin β-Te films with near-complete coverages by driving the growth kinetics to the extreme condition. There is a critical thickness (3 monolayer) above which the two-dimensional Te films can form on the STO (001) substrate. In addition, the scanning tunneling spectra on the ultra-thin Te film grown on STO exhibits an enormously large forbidden gap compared with that grown on the graphene substrate. Our work establishes the necessary conditions for the growth of ultra-thin materials with similar kinetics and thermodynamics.
Keywords:  molecular beam epitaxy      ultra-thin films      electronic structure  
Received:  02 March 2023      Revised:  09 March 2023      Accepted manuscript online:  28 March 2023
PACS:  68.55.-a (Thin film structure and morphology)  
  36.20.Kd (Electronic structure and spectra)  
  07.79.Cz (Scanning tunneling microscopes)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61804056 and 92065102) and the National Key R&D Program of China (Grant No. 2022YFA1403100).
Corresponding Authors:  Ye-Ping Jiang     E-mail:  ypjiang@clpm.ecnu.edu.cn

Cite this article: 

Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平) Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates 2023 Chin. Phys. B 32 066802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A2004 Science 306 666
[2] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C2007 Science 318 766
[3] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C2018 Nat. Commun. 9 2003
[4] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P2018 Science 359 76
[5] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M2008 Nature 456 624
[6] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F2015 Nat. Mater. 14 285
[7] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H2016 Science 353 274
[8] Chang K, Kaloni T P, Lin H, Bedoya-Pinto A, Pandeya A K, Kostanovskiy I, Zhao K, Zhong Y, Hu X, Xue Q K, Chen X, Ji S H, Barraza-Lopez S and Parkin S S P2019 Adv. Mater. 31 1804428
[9] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, and Xu X D2016 Nat. Rev. Mater. 1 15
[10] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R2017 Science 357 287
[11] Yang F, Miao L, Wang Z F, Yao M Y, Zhu F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C, Liu F, Qian D, Gao C L, and Jia J F2012 Phys. Rev. Lett. 109 016801
[12] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G2018 Nat. Mater. 17 1081
[13] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z and Chen W2016 Nano Lett. 16 4903
[14] Peng M, Xie R Z, Wang Z, et al.2021 Sci. Adv. 7 11
[15] Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D and Wu W Z2018 Nat. Electron. 1 228
[16] Yang P, Zha J, Gao G, Zheng L, Huang H, Xia Y, Xu S, Xiong T, Zhang Z, Yang Z, Chen Y, Ki D K, Liou J J, Liao W and Tan C2022 Nano-Micro Lett. 14 109
[17] Agapito L A, Kioussis N, Goddard W A 3rd and Ong N P2013 Phys. Rev. Lett. 110 176401
[18] Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y and Zhang Z2017 Phys. Rev. Lett. 119 106101
[19] Xian L D, Paz A P, Bianco E, Ajayan P M and Rubio A2017 2D Mater. 4 041003
[20] Zhang W, Wu Q S, Yazyev O V, Weng H M, Guo Z X, Cheng W D and Chai G L2018 Phys. Rev. B 98 115411
[21] Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W and Guo J2017 Nano Lett. 17 4619
[22] Gao Z, Tao F and Ren J2018 Nanoscale 10 12997
[23] Xian J J, Wang C, Zhang Z M, Qin L, Ji W, Chen F C, Luo X, Sun Y P, Zhang W H and Fu Y S2020 Nanoscale 12 1994
[24] Miao G Y, Qiao J S, Huang X C, Liu B, Zhong W L, Wang W H, Ji W and Guo J D2021 Phys. Rev. B 103 235421
[25] Ohnishi T, Shibuya K, Lippmaa M, Kobayashi D, Kumigashira H, Oshima M and Koinuma H2004 Appl. Phys. Lett. 85 272
[26] Connell J G, Isaac B J, Ekanayake G B, Strachan D R and Seo S S A2012 Appl. Phys. Lett. 101 251607
[27] Lin Y Y, Becerra-Toledo A E, Silly F, Poeppelmeier K R, Castell M R and Marks L D2011 Surf. Sci. 605 L51
[28] Chen J, Dai Y, Ma Y, Dai X, Ho W and Xie M2017 Nanoscale 9 15945
[1] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[2] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[3] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[4] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[5] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[6] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[7] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!