Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization |
Shenshen Yan(闫申申)1, Yan Liu(刘岩)1, Zi Wang(王子)1,†, Xiaohua Lan(兰晓华)1, Yi Wang(汪毅)1, and Jie Ren(任捷)1,2,‡ |
1 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China |
|
|
Abstract The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption. The multilayer metamaterials could enhance the radiative cooling performance. However, it is a challenge to design the radiative cooler. In this work, based on the particle swarm optimization (PSO) evolutionary algorithm, we develop an intelligent workflow in designing photonic radiative cooling metamaterials. Specifically, we design two 10-layer ${\rm SiO_2}$ radiative coolers doped by cylindrical ${\rm MgF_2}$ or air impurities, possessing high emissivity within the selective (8-13 μm) and broadband (8-25 μm) atmospheric transparency windows, respectively. Our two kinds of coolers demonstrate power density as high as 119 W/m$^2$ and 132 W/m$^2$ at the room temperature (300 K). Our scheme does not rely on the usage of special materials, forming high-performing metamaterials with conventional poor-performing components. This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.
|
Received: 15 January 2023
Revised: 10 February 2023
Accepted manuscript online: 02 March 2023
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
44.40.+a
|
(Thermal radiation)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11935010) and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology. |
Corresponding Authors:
Zi Wang, Jie Ren
E-mail: prince@tongji.edu.cn;xonics@tongji.edu.cn
|
Cite this article:
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷) Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization 2023 Chin. Phys. B 32 057802
|
[1] Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X and Yang R 2019 Appl. Phys. Rev. 6 021306 [2] Yu X, Chan J and Chen C 2021 Nano Energy 88 106259 [3] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540 [4] Fan S and Li W 2022 Nat. Photon. 16 182 [5] Peng J, Tang G, Wang L, Macȇdo R, Chen H and Ren J 2021 ACS Photon. 8 2183 [6] Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu C W and Tao G 2022 Natl. Sci. Rev. 10 nwac208 [7] Rephaeli E, Raman A and Fan S 2013 Nano Lett. 13 1457 [8] Hossain M M and Gu M 2016 Adv. Sci. 3 1500360 [9] Granqvist C and Hjortsberg A 1980 Appl. Phys. Lett. 36 139 [10] Granqvist C and Hjortsberg A 1981 J. Appl. Phys. 52 4205 [11] Berdahl P, Martin M and Sakkal F 1983 Int. J. Heat Mass Transf. 26 871 [12] Orel B, Gunde M K and Krainer A 1993 Sol. Energy 50 477 [13] Suryawanshi C N and Lin C T 2009 ACS Appl. Mater. Interfaces 1 1334 [14] Gentle A R and Smith G B 2010 Nano Lett. 10 373 [15] Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V and Troise G 1975 Sol. Energy 17 83 [16] Johnson T 1975 Sol. Energy 17 173 [17] Zhao B, Hu M, Ao X, Xuan Q and Gang P 2018 Sol. Energy Mater. Sol. Cells 178 266 [18] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 980 [19] Zou C, Ren G, Hossain M M, Nirantar S, Withayachumnankul W, Ahmed T, Bhaskaran M, Sriram S, Gu M and Fumeaux C 2017 Adv. Opt. Mater. 5 1700460 [20] Kou J l, Jurado Z, Chen Z, Fan S and Minnich A J 2017 ACS Photon. 4 626 [21] Zhu L, Raman A, Wang K X, Anoma M A and Fan S 2014 Optica 1 32 [22] Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R and Yin X 2017 Science 355 1062 [23] Wan P, Wen X, Sun C, Chandran B K, Zhang H, Sun X and Chen X 2015 Small 11 5409 [24] Xiong W, Liu H, Chen Y, Zheng M, Zhao Y, Kong X, Wang Y, Zhang X, Kong X and Wang P 2016 Adv. Mater. 28 7167 [25] Zhu H, Li Q, Tao C, Hong Y, Xu Z, Shen W, Kaur S, Ghosh P and Qiu M 2021 Nat. Commun. 12 1805 [26] Bijarniya J P, Sarkar J and Maiti P 2020 Renew. Sust. Energ. Rev. 133 110263 [27] Mandal J, Fu Y, Overvig A C, Jia M, Sun K, Shi N N, Zhou H, Xiao X, Yu N and Yang Y 2018 Science 362 315 [28] Lu X, Xu P, Wang H, Yang T and Hou J 2016 Renew. Sust. Energ. Rev. 65 1079 [29] Santamouris M and Feng J 2018 Buildings 8 168 [30] Chen L, Zhang K, Ma M, Tang S, Li F and Niu X 2020 Build. Simul. 13 1165 [31] Li W, Li Y and Shah K W 2020 Sol. Energy 207 247 [32] Li X, Xie W, Sui C and Hsu P C 2020 ACS Mater. Lett. 2 1624 [33] Zhu L, Raman A P and Fan S 2015 Proc. Natl. Acad. Sci. USA 112 12282 [34] Li W, Shi Y, Chen K, Zhu L and Fan S 2017 ACS Photon. 4 774 [35] Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S and Cui Y 2016 Science 353 1019 [36] Lan X, Wang Y, Peng J, Si Y, Ren J, Ding B and Li B 2021 Mater. Today Phys. 17 100342 [37] Peng Y and Cui Y 2020 Joule 4 724 [38] Xia Z, Zhang Z, Meng Z, Ding L and Yu Z 2019 ACS Appl. Mater. Interfaces 11 33941 [39] Raman A P, Li W and Fan S 2019 Joule 3 2679 [40] Dong M, Zhang Z, Shi Y, Zhao X, Fan S and Chen Z 2020 Nanoscale Microscale Thermophys. Eng. 24 43 [41] Shi Y, Li W, Raman A and Fan S 2018 ACS Photon. 5 684 [42] Long Y, Ren J, Li Y and Chen H 2019 Appl. Phys. Lett. 114 181105 [43] Chen J, Peng J, Yang C, Dun X, Cheng X, Chen H and Ren J 2021 Appl. Phys. Lett. 119 114102 [44] Long Y, Ren J and Chen H 2020 Phys. Rev. Lett. 124 185501 [45] Tan Y T, Wang L Q, Wang Z, Peng J and Ren J 2021 Chin. Phys. B 30 036301 [46] Yan S, Wang Y, Gao Z, Long Y and Ren J 2021 Chin. Phys. Lett. 38 027301 [47] Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J and Rodriguez A W 2018 Nat. Photon. 12 659 [48] Jiang J, Chen M and Fan J A 2021 Nat. Rev. Mater. 6 679 [49] Chen Z and Segev M 2021 eLight 1 2 [50] Chae D, Kim M, Jung P H, Son S, Seo J, Liu Y, Lee B J and Lee H 2020 ACS Appl. Mater. Interfaces 12 8073 [51] García-Esteban J, Bravo-Abad J and Cuevas J 2021 Phys. Rev. Appl. 16 064006 [52] Zhang Z, Dai Y and Ma C 2021 Opt. Commun. 500 127323 [53] Naghshine B B and Saboonchi A 2018 Opt. Commun. 410 416 [54] Huang Y, Pu M, Zhao Z, Li X, Ma X and Luo X 2018 Opt. Commun. 407 204 [55] Kim S, Shang W, Moon S, Pastega T, Lee E and Luo T 2022 ACS Energy Lett. 7 4134 [56] Guo J, Ju S, Lee Y, Gunay A A and Shiomi J 2022 Int. J. Heat Mass Transf. 195 123193 [57] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517 [58] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047 [59] Zhang W W, Qi H, Sun A T, Ren Y T and Shi J W 2020 Opt. Express 28 20609 [60] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [61] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 [62] Kennedy J and Eberhart R 1995 Proceedings of ICNN'95 - International Conference on Neural Networks, November 27-December 1, 1995, Perth, WA, Australia, p. 1942 [63] Poli R, Kennedy J and Blackwell T 2007 Swarm Intell. 1 33 [64] Lyakhov A O, Oganov A R and Valle M 2010 Comput. Phys. Commun. 181 1623 [65] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172 [66] Liu V and Fan S 2012 Comput. Phys. Commun. 183 2233 [67] Zhan Z H, Zhang J, Li Y and Chung H S H 2009 IEEE Trans. Syst. Man Cybern. Part B-Cybern. 39 1362 [68] Shi Y and Eberhart R 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), May 4-9, 1998, Anchorage, AK, USA, p. 69 [69] Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R and Ye H 2018 Mater. Des. 139 104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|