Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040309    DOI: 10.1088/1674-1056/acac14
GENERAL Prev   Next  

Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements

Yuyu Chen(陈玉玉)1,2,3, Fenzhuo Guo(郭奋卓)1,2,3,†, Shihui Wei(魏士慧)4,‡, and Qiaoyan Wen(温巧燕)3
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China;
3 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
4 CETC Cyberspace Security Technology Co., Ltd., Beijing 100041, China
Abstract  We aim to explore all possible scenarios of ($ 1 \rightarrow 2 $) (where one wing is untrusted and the others two wings are trusted) and ($ 2 \rightarrow 1 $) (where two wings are untrusted, and one wing is trusted) genuine tripartite Einstein-Podolsky-Rosen (EPR) steering. The generalized Greenberger-Horne-Zeilinger (GHZ) state is shared between three spatially separated parties, Alice, Bob and Charlie. In both ($ 1 \rightarrow 2 $) and ($ 2 \rightarrow 1 $), we discuss the untrusted party and trusted party performing a sequence of unsharp measurements, respectively. For each scenario, we deduce an upper bound on the number of sequential observers who can demonstrate genuine EPR steering through the quantum violation of tripartite steering inequality. The results show that the maximum number of observers for the generalized GHZ states can be the same with that of the maximally GHZ state in a certain range of state parameters. Moreover, both the sharpness parameters range and the state parameters range in the scenario of ($ 1 \rightarrow 2 $) steering are larger than those in the scenario of ($ 2 \rightarrow 1 $) steering.
Keywords:  quantum information      quantum steering      generalized Greenberger-Horne-Zeilinger (GHZ) state  
Received:  14 October 2022      Revised:  24 November 2022      Accepted manuscript online:  16 December 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171056 and 61973021) and Henan Key Laboratory of Network Cryptography Technology (Grant No. LNCT2022-A03).
Corresponding Authors:  Fenzhuo Guo, Shihui Wei     E-mail:  gfenzhuo@bupt.edu.cn;wei.shihui07403@westone.com.cn

Cite this article: 

Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕) Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements 2023 Chin. Phys. B 32 040309

[1] Vaziri A, Weihs G and Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[2] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[3] Bourennane M, Eibl M, Kurtsiefer C, Gaertner S, Weinfurter H, Gühne O, Hyllus P, Bruß D, Lewenstein M and Sanpera A 2004 Phys. Rev. Lett. 92 087902
[4] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[5] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[6] Wei S H 2022 Research on self-testing of quantum systems and nonlocality sharing (Ph.D. dissertation) (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[7] Collins D, Gisin N, Popescu S, Roberts D and Scarani V 2002 Phys. Rev. Lett. 88 170405
[8] Wildfeuer C F, Lund A P and Dowling J P 2007 Phys. Rev. A 76 052101
[9] Das D, Sasmal S and Roy S 2019 Phys. Rev. A 99 052109
[10] Armstrong S, Wang M, Teh R Y, Gong Q, He Q, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167
[11] Guang Y Y, Feng C W and Yan W Q 2010 Chin. Phys. B 19 050306
[12] Gaertner S, Kurtsiefer C, Bourennane M and Weinfurter H 2007 Phys. Rev. Lett. 98 020503
[13] Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
[14] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[15] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
[16] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404
[17] Cavalcanti D and Skrzypczyk P 2016 Rep. Prog. Phys. 80 024001
[18] Bennet A J, Evans D A, Saunders D J, Branciard C, Cavalcanti E G, Wiseman H M and Pryde G J 2012 Phys. Rev. X 2 031003
[19] Gallego R and Aolita L 2015 Phys. Rev. X 5 041008
[20] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[21] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
[22] Marciniak M, Rutkowski A, Yin Z, Horodecki M and Horodecki R 2015 Phys. Rev. Lett. 115 170401
[23] Riccardi A, Macchiavello C and Maccone L 2018 Phys. Rev. A 97 052307
[24] Ma R, Yan T, Wu D and Qi X 2021 Entropy 24 62
[25] Kogias I, Skrzypczyk P, Cavalcanti D, Acín A and Adesso G 2015 Phys. Rev. Lett. 115 210401
[26] Ku H Y, Chen S L, Budroni C, Miranowicz A, Chen Y N and Nori F 2018 Phys. Rev. A 97 022338
[27] Zhu D, Shang W M, Zhang F L and Chen J L 2022 Chin. Phys. Lett. 39 070302
[28] Cheng S, Liu L, Baker T J and Hall M J 2021 Phys. Rev. A 104 L060201
[29] Silva R, Gisin N, Guryanova Y and Popescu S 2015 Phys. Rev. Lett. 114 250401
[30] Yao D and Ren C 2021 Phys. Rev. A 103 052207
[31] Gupta S, Maity A G, Das D, Roy A and Majumdar A 2021 Phys. Rev. A 103 022421
[32] Sasmal S, Das D, Mal S and Majumdar A 2018 Phys. Rev. A 98 012305
[33] Zhu J, Hu M J, Li C F, Guo G C and Zhang Y S 2018 Phys. Rev. A 105 032211
[34] Nieto-Silleras O, Pironio S and Silman J 2014 New J. Phys. 16 013035
[35] Midgley S, Ferris A and Olsen M 2010 Phys. Rev. A 81 022101
[36] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J K, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404
[37] Zheng S S, Sun F X, Yuan H Y, Ficek Z, Gong Q H and He Q Y 2021 Sci. China Phys. Mech. 64 1
[38] Cavalcanti D, Skrzypczyk P, Aguilar G, Nery R, Ribeiro P and Walborn S 2015 Nat. Commun. 6 7941
[39] Busch P 1986 Phys. Rev. D 33 2253
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[8] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[9] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[10] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[11] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[12] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[13] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[14] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[15] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
No Suggested Reading articles found!