Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉)1,2,3, Fenzhuo Guo(郭奋卓)1,2,3,†, Shihui Wei(魏士慧)4,‡, and Qiaoyan Wen(温巧燕)3
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China; 3 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; 4 CETC Cyberspace Security Technology Co., Ltd., Beijing 100041, China
Abstract We aim to explore all possible scenarios of () (where one wing is untrusted and the others two wings are trusted) and () (where two wings are untrusted, and one wing is trusted) genuine tripartite Einstein-Podolsky-Rosen (EPR) steering. The generalized Greenberger-Horne-Zeilinger (GHZ) state is shared between three spatially separated parties, Alice, Bob and Charlie. In both () and (), we discuss the untrusted party and trusted party performing a sequence of unsharp measurements, respectively. For each scenario, we deduce an upper bound on the number of sequential observers who can demonstrate genuine EPR steering through the quantum violation of tripartite steering inequality. The results show that the maximum number of observers for the generalized GHZ states can be the same with that of the maximally GHZ state in a certain range of state parameters. Moreover, both the sharpness parameters range and the state parameters range in the scenario of () steering are larger than those in the scenario of () steering.
(Entanglement measures, witnesses, and other characterizations)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171056 and 61973021) and Henan Key Laboratory of Network Cryptography Technology (Grant No. LNCT2022-A03).
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕) Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements 2023 Chin. Phys. B 32 040309
[1] Vaziri A, Weihs G and Zeilinger A 2002 Phys. Rev. Lett.89 240401 [2] Gühne O and Tóth G 2009 Phys. Rep.474 1 [3] Bourennane M, Eibl M, Kurtsiefer C, Gaertner S, Weinfurter H, Gühne O, Hyllus P, Bruß D, Lewenstein M and Sanpera A 2004 Phys. Rev. Lett.92 087902 [4] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys.86 419 [5] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A76 052116 [6] Wei S H 2022 Research on self-testing of quantum systems and nonlocality sharing (Ph.D. dissertation) (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [7] Collins D, Gisin N, Popescu S, Roberts D and Scarani V 2002 Phys. Rev. Lett.88 170405 [8] Wildfeuer C F, Lund A P and Dowling J P 2007 Phys. Rev. A 76 052101 [9] Das D, Sasmal S and Roy S 2019 Phys. Rev. A99 052109 [10] Armstrong S, Wang M, Teh R Y, Gong Q, He Q, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys.11 167 [11] Guang Y Y, Feng C W and Yan W Q 2010 Chin. Phys. B19 050306 [12] Gaertner S, Kurtsiefer C, Bourennane M and Weinfurter H 2007 Phys. Rev. Lett.98 020503 [13] Du Y T and Bao W S 2018 Chin. Phys. B27 080304 [14] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc.31 555 [15] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett.112 180404 [16] Piani M and Watrous J 2015 Phys. Rev. Lett.114 060404 [17] Cavalcanti D and Skrzypczyk P 2016 Rep. Prog. Phys.80 024001 [18] Bennet A J, Evans D A, Saunders D J, Branciard C, Cavalcanti E G, Wiseman H M and Pryde G J 2012 Phys. Rev. X2 031003 [19] Gallego R and Aolita L 2015 Phys. Rev. X5 041008 [20] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A80 032112 [21] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A87 062103 [22] Marciniak M, Rutkowski A, Yin Z, Horodecki M and Horodecki R 2015 Phys. Rev. Lett.115 170401 [23] Riccardi A, Macchiavello C and Maccone L 2018 Phys. Rev. A97 052307 [24] Ma R, Yan T, Wu D and Qi X 2021 Entropy24 62 [25] Kogias I, Skrzypczyk P, Cavalcanti D, Acín A and Adesso G 2015 Phys. Rev. Lett.115 210401 [26] Ku H Y, Chen S L, Budroni C, Miranowicz A, Chen Y N and Nori F 2018 Phys. Rev. A97 022338 [27] Zhu D, Shang W M, Zhang F L and Chen J L 2022 Chin. Phys. Lett.39 070302 [28] Cheng S, Liu L, Baker T J and Hall M J 2021 Phys. Rev. A 104 L060201 [29] Silva R, Gisin N, Guryanova Y and Popescu S 2015 Phys. Rev. Lett.114 250401 [30] Yao D and Ren C 2021 Phys. Rev. A103 052207 [31] Gupta S, Maity A G, Das D, Roy A and Majumdar A 2021 Phys. Rev. A 103 022421 [32] Sasmal S, Das D, Mal S and Majumdar A 2018 Phys. Rev. A98 012305 [33] Zhu J, Hu M J, Li C F, Guo G C and Zhang Y S 2018 Phys. Rev. A105 032211 [34] Nieto-Silleras O, Pironio S and Silman J 2014 New J. Phys.16 013035 [35] Midgley S, Ferris A and Olsen M 2010 Phys. Rev. A81 022101 [36] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J K, Li C F and Guo G C 2016 Phys. Rev. Lett.116 160404 [37] Zheng S S, Sun F X, Yuan H Y, Ficek Z, Gong Q H and He Q Y 2021 Sci. China Phys. Mech.64 1 [38] Cavalcanti D, Skrzypczyk P, Aguilar G, Nery R, Ribeiro P and Walborn S 2015 Nat. Commun.6 7941 [39] Busch P 1986 Phys. Rev. D33 2253
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.