Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024211    DOI: 10.1088/1674-1056/ac7860
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals

Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩)
College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  To explore the effect of non-uniform polarization on orbital angular momentum (OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex (NUPV) beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex (UPV) beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of $m$-mode concentrated at $m=l\pm 1$ modes rather than $m=l$ mode, and reveal the relation among topological charge $l$, mode of spiral spectra $m$ and the power weight value $R_{m}$ expressed by $l=\sum_{m=-\infty }^\infty {mR_{m} } $. The relation $l=\sum_{m=-\infty }^\infty {mR_{m} } $ is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications, optical metrology, and imaging by varying the initial non-uniform polarization.
Keywords:  non-uniformly polarized beams      spiral spectrum      spin angular momentum      orbital angular momentum      vortex  
Received:  17 March 2022      Revised:  18 May 2022      Accepted manuscript online:  14 June 2022
PACS:  42.55.-f (Lasers)  
  42.81.Gs (Birefringence, polarization)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Fund: Project supported by the Science and Technology Program of Sichuan Province, China (Grant No. 23NSFSC1097).
Corresponding Authors:  Ke Cheng     E-mail:  ck@cuit.edu.cn

Cite this article: 

Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩) Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals 2023 Chin. Phys. B 32 024211

[1] Pan Y, Gao X Z, Ma R D, Tu C H, Li Y N and Wang H T 2020 Chin. Opt. Lett. 18 122601
[2] Alexeyev C N, Barshak E V, Lapin B P and Yavorsky M A 2018 Phys. Rev. A 98 023824
[3] Han L, Qi S X, Liu S, Li P, Cheng H C and Zhao J L 2020 Chin. Phys. B 29 094203
[4] Shi P, Du L P and Yuan X C 2018 Opt. Express 26 23449
[5] Suzuki M, Yamane K, Oka K, Toda Y and Morita R 2016 Phys. Rev. A 94 043851
[6] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light: Sci. Appl. 8 90
[7] Yang Y J, Zhao Q, Liu L L, Rosales-Guzmán C and Qiu C W 2019 Phys. Rev. Appl. 12 064007
[8] Zhao Q, Dong M, Bai Y H and Yang Y J 2020 Photon. Res. 8 745
[9] O'Neil A T, MacVicar I, Allen L and Padgett M J 2002 Phys. Rev. Lett. 88 053601
[10] Bai Y H, Lv H R, Fu X and Yang Y J 2022 Chin. Opt. Lett. 20 012601
[11] Forbes K A and Andrews D L 2019 Phys. Rev. A 99 023837
[12] Bliokh K Y, Alonso M A, Ostrovskaya E A and Aiello A 2010 Phys. Rev. A 82 063825
[13] Chen R P, Chew K H, Dai C Q and Zhou G Q 2017 Phys. Rev. A 96 053862
[14] Sztul H I and Alfano R R 2008 Opt. Express 16 9411
[15] Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202
[16] Watkins R J, Dai K, White G, Li W, Miller J K, Morgan K S and Johnson E G 2020 Opt. Express 28 924
[17] Li Y, Yu L and Zhang Y X 2017 Opt. Express 25 12203
[18] Ciattoni A, Crosignani B and Porto P D 2001 J. Opt. Soc. Am. A 18 1656
[19] Ciattoni A, Cincotti G, Provenziani D and Palma C 2002 Phys. Rev. E 66 036614
[20] Liu D J, Wang H, Wang Y C and Yin H M 2015 Opt. & Laser Tech. 73 12
[21] Shu L Y, Cheng K, Liao S, Liang M T and Zhu B Y 2021 Optik 243 167464
[22] Willner A E, Huang H, Yan Y, Ren Y X, Ahmed N, Xie G D, Bao C J, Li L, Cao Y W, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66
[23] Kaushal H and Kaddoum G 2017 IEEE Commun. Surv. Tutor. 19 57
[24] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101
[25] Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163
[26] Xu K, Yang Y F, He Y, Han X H and Li C F 2010 J. Opt. Soc. Am. A 27 572
[27] Cheng K, Jiao L Y and Zhong X Q 2016 Opt. Commun. 367 112
[28] Torner L, Torres J P and Carrasco S 2005 Opt. Express 13 873
[29] Liu Y D, Gao C Q, Qi X Q and Weber H 2008 Opt. Express 16 7091
[30] Kotlyar V V and Kovalev A A 2021 J. Opt. Soc. Am. A 38 1276
[31] Radwell N, Hawley R D, Götte J B and Franke-Arnold S 2016 Nat. Commun. 7 10564
[32] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[33] Enk S J V and Nienhuis G 1992 Opt. Commun. 94 147
[34] Zhou G Q, Ji Z Y and Ru G Y 2016 Laser Phys. 26 075002
[35] Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q and Zhang D 2016 Appl. Opt. 55 4642
[36] Kobayashi H, Nonaka K and Kitano M 2012 Opt. Express 20 14064
[1] Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase
Aotian Wang(王傲天), Lianghong Yu(於亮红), Jinfeng Li(李进峰), and Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2023, 32(4): 044201.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[7] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[12] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[13] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
No Suggested Reading articles found!