CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage |
Lijian Guo(郭力健), Weizong Xu(徐尉宗)†, Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海)‡ |
School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract By introducing a thin p-type layer between the Schottky metal and n-GaN layer, this work presents a Schottky-pn junction diode (SPND) configuration for the GaN rectifier fabrication. Specific unipolar carrier conduction characteristic is demonstrated by the verification of temperature-dependent current-voltage (I-V) tests and electroluminescence spectra. Meanwhile, apparently advantageous forward conduction properties as compared to the pn diode fabricated on the same wafer have been achieved, featuring a lower turn-on voltage of 0.82 V. Together with the analysis model established in the GaN SPND for a wide-range designable turn-on voltage, this work provides an alternative method to the GaN rectifier strategies besides the traditional solution.
|
Received: 19 April 2022
Revised: 23 June 2022
Accepted manuscript online: 18 July 2022
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2141241, 62004099, 61921005, and 91850112). |
Corresponding Authors:
Weizong Xu, Hai Lu
E-mail: wz.xu@nju.edu.cn;hailu@nju.edu.cn
|
Cite this article:
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海) Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage 2023 Chin. Phys. B 32 027302
|
[1] Baliga B J 1982 J. Appl. Phys. 53 1759 [2] Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D 51 273001 [3] Cao Y, Chu R, Li R, Chen M, Chang R and Hughes B 2016 Appl. Phys. Lett. 108 062103 [4] Wang W F, Wang J F, Zhang Y M, Li T K, Xiong R and Xu K 2020 Chin. Phys. B 29 047305 [5] Han S, Yang S and Sheng K 2019 IEEE Electron Dev. Lett. 40 1040 [6] Li Y, Wang M, Yin R, Zhang J, Tao M, Xie B, Hao Y, Yang X, Wen C P and Shen B 2020 IEEE Electron Dev. Lett. 41 329 [7] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 560 [8] Hu J, Stoffels S, Lenci S, Bakeroot B, Venegas R, Groeseneken G and Decoutere S 2015 Appl. Phys. Lett. 106 083502 [9] Han S, Yang S, Li R, Wu X and Sheng K 2019 IEEE Trans. Power Electron. 34 5012 [10] Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T and Palacios T 2013 IEEE Trans. Electron Dev. 60 2224 [11] Ren B, Liao M, Sumiya M, Wang L, Koide Y and Sang L 2017 Appl. Phys. Express 10 051001 [12] Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J and Hao Y 2019 Appl. Phys. Express 12 084004 [13] Xu W Z, Fu L H, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 057303 [14] Wang T T, Wang X, Li X B, Zhang J C and Ao J P 2019 Chin. Phys. Lett. 36 057101 [15] Sun Y, Kang X, Zheng Y, Lu J, Tian X, Wei K, Wu H, Wang W, Liu X and Zhang G 2019 Electronics 8 575 [16] Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D and Xing H G 2017 IEEE Trans. Electron Dev. 64 1635 [17] Hayashida T, Nanjo T, Furukawa A, Watahiki T and Yamamuka M 2018 Jpn. J. Appl. Phys. 57 040302 [18] Greenlee J D, Anderson T J, Feigelson B N, Hobart K D and Kub F J 2015 Phys. Status Solidi A 212 2772 [19] Fu K, Fu H, Liu H, Alugubelli S R, Yang T H, Huang X, Chen H, Baranowski I, Montes J, Ponce F A and Zhao Y 2018 Appl. Phys. Lett. 113 233502 [20] Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H and Yamasaki S 2009 Appl. Phys. Lett. 94 262101 [21] Surdi H, Ahmad M F, Koeck F, Nemanich R J, Goodnick S and Thornton T J 2020 IEEE Microw. Wireless Comp. Lett. 30 1141 [22] Jha V, Surdi H, Faizan Ahmad M, Koeck F, Nemanich R J, Goodnick S and Thornton T J 2021 Solid State Electron. 186 108154 [23] Kojima K and Okumura H 2020 Appl. Phys. Lett. 116 012103 [24] Nie K, Xu W, Ren F, Zhou D, Pan D, Ye J, Chen D, Zhang R, Zheng Y and Lu H 2020 IEEE Electron Dev. Lett. 41 469 [25] Yu L S, Qiao D, Jia L, Lau S S, Qi Y and Lau K M 2001 Appl. Phys. Lett. 79 4536 [26] Ueno K, Shibahara K, Kobayashi A and Fujioka H 2021 Appl. Phys. Lett. 118 022102 [27] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (3rd edn.) (New York: Wiley) [28] Wang Z, Lou Y, Naka S and Okada H 2011 Appl. Phys. Lett. 98 063302 [29] Wang Z, Alam M, Lou Y, Naka S and Okada H 2012 Appl. Phys. Lett. 100 043302 [30] Madelung O 1991 Semiconductor: group IV elements and III-V compound (Berlin: Springer) [31] Michaelson H B 1978 IBM J. Res. Dev. 22 72 [32] Khadar R A, Floriduz A, Wang T and Matioli E 2021 Appl. Phys. Express 14 071006 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|