CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet |
Linlin Li(李林霖)1, Jia Luo(罗佳)1, Jing Xia(夏静)2, Yan Zhou(周艳)3, Xiaoxi Liu(刘小晰)2, and Guoping Zhao(赵国平)1,4,† |
1 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China; 2 Department of Electrical and Computer Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan; 3 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; 4 Center for Magnetism and Spintronics, Sichuan Normal University, Chengdu 610068, China |
|
|
Abstract Skyrmions in synthetic antiferromagnetic (SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density. Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin-orbit torque, the skyrmion Hall effect, skyrmion-skyrmion repulsion, and skyrmion-edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.
|
Received: 26 July 2022
Revised: 28 September 2022
Accepted manuscript online: 18 October 2022
|
PACS:
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Fund: Guoping Zhao acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 51771127, 52171188, and 52111530143) and the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province, China (Grant No. 2021ZYD0025). Jing Xia was a JSPS International Research Fellow supported by JSPS KAKENHI (Grant No. JP22F22061). Yan Zhou acknowledges the support from Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120047), Guangdong Special Support Project (Grant No. 2019BT02X030), Shenzhen Fundamental Research Fund (Grant No. JCYJ20210324120213037), Shenzhen Peacock Group Plan (No. KQTD20180413181702403), Pearl River Recruitment Program of Talents (Grant No. 2017GC010293), and the National Natural Science Foundation of China (Grant Nos. 11974298 and 61961136006). Xiaoxi Liu acknowledges the support from the Grantsin-Aid Scientific Research from JSPS KAKENHI (Grant Nos. JP20F20363, JP21H01364, and JP21K18872). |
Corresponding Authors:
Guoping Zhao
E-mail: zhaogp@uestc.edu.cn
|
Cite this article:
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平) Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet 2023 Chin. Phys. B 32 017506
|
[1] Skyrme T H R 1962 Nucl. Phys. 31 556 [2] Bogdanov A N and Yablonskii D A 1989 J. Exp. Theor. Phys. 68 101 [3] Bogdanov N and Hubert A 1994 J. Magn. Magn. Matter. 138 255 [4] Wright D C and Mermin N D 1989 Rev. Mod. Phys. 61 385 [5] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797 [6] Tewari S, Belitz D and Kirkpatrick T R 2006 Phys. Rev. Lett. 96 047207 [7] Binz B, Vishwanath A and Aji V 2006 Phys. Rev. Lett. 96 207202 [8] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915 [9] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449 [10] Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981 [11] Yang H X, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210 [12] Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, C. J B A, Amiri P K and Wang K L 2018 Nano Lett. 18 980 [13] Wang L, Liu C, Mehmood N, Han G, Wang Y D, Xu X L, Feng C, Hou Z P, Peng Y, Gao X S and Yu G H 2019 ACS Appl. Mater. Interfaces 11 12098 [14] Moreau-Luchaire C, Mouta S, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444 [15] Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y and Zhao G P 2022 Rare Met. 41 2200 [16] Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G and Wang S G 2020 Adv. Mater. 32 1907452 [17] Tang J, Kong L Y, Wang W W, Du H F and Tian M l 2019 Chin. Phys. B 28 087503 [18] Kang W, Huang Y Q, Zhang X C, Zhou Y and Zhao W S 2016 Proc. IEEE 104 2040 [19] Finocchio G, Büttner F, Tomasello R, Carpentieri M and Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001 [20] Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K and Wang K L 2017 Nano Lett. 17 261 [21] Fert A and Van Dau F N 2019 C. R. Phys. 20 817 [22] Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N and Zhang Y G 2018 Acta Phys. Sin. 67 131205 (in Chinese) [23] Xing X J, Pong P W T and Zhou Y 2016 Phys. Rev. B 94 054408 [24] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652 [25] Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y and Zhao G P 2018 Acta Phys. Sin. 67 137510 (in Chinese) [26] He Z Z, Angizi S and Fan D L 2017 IEEE Magn. Lett. 8 4305705 [27] Luo S J, Song M, Li X, Zhang Y, Hong J, Yang X F, Zou X C, Xu N and You L 2018 Nano Lett. 18 1180 [28] Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C and Friedman J S 2019 Phys. Rev. Appl. 12 064053 [29] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [30] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217 [31] Fattouhi M, Mak K Y, Zhou Y, Zhang X, Liu X X and El Hafidi M 2021 Phys. Rev. Appl. 16 014040 [32] Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X and Zhou Y 2018 Acta Phys. Sin. 67 137505 (in Chinese) [33] White J S, Prsa K, Huang P, Omrani A A, Zivkovic I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J and Ronnow H M 2014 Phys. Rev. Lett. 113 107203 [34] Liu Y Z, Yin G, Zang J D, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411 [35] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology 26 225701 [36] Okamura Y, Kagawa F, Seki S and Tokura Y 2016 Nat. Commun. 7 12669 [37] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988 [38] Lin S Z, Batista C D, Reichhardt C and Saxena A 2014 Phys. Rev. Lett. 112 187203 [39] Zhang W, Jungfleisch M B, Freimuth F, Jiang W, Sklenar J, Pearson J E, Ketterson J B, Mokrousov Y and Hoffmann A 2015 Phys. Rev. B 92 144405 [40] Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep 5 7643 [41] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 [42] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293 [43] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153 [44] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34 [45] Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X and Zhou Y 2022 Rare Met. 41 2249 [46] Thiele A A 1973 Phys. Rev. Lett. 30 230 [47] Ma X P, Piao H G, Yang L, Kim D H, You C Y and Pan L Q 2020 Chin Phys. B 29 097502 [48] Zhang X C, Ezawa M and Zhou Y 2015 Sci. Rep 5 9400 [49] Luo S J and You L 2021 APL Mater. 9 050901 [50] Lin S Z, Reichhardt C, Batista C D and Saxena A 2013 Phys. Rev. B 87 214419 [51] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402 [52] Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349 [53] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158 [54] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404 [55] Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601 [56] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2016 Nat. Phys. 13 162 [57] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203 [58] Zhao L, Liang X, Xia J, Zhao G P and Zhou Y 2020 Nanoscale 12 9507 [59] Xia J, Zhang X C, Mak K Y, Ezawa M, Tretiakov O A, Zhou Y, Zhao G P and Liu X X 2021 Phys. Rev. B 103 174408 [60] Liang X, Zhao G P, Shen L C, Xia J, Zhao L, Zhang X C and Zhou Y 2019 Phys. Rev. B 100 144439 [61] Donahue M J and Porter DG 1999 Interagency Report NISTIR 6376 [62] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463 [63] Iwasaki J, Koshibae W and Nagaosa N 2014 Nano Lett. 14 4432 [64] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [65] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|