CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of dipolar interactions on magnetic properties of Co nanowire arrays |
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴) |
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Magnetic properties and magnetization processes of Co nanowire arrays with various packing densities are investigated by means of object-oriented micromagnetic framework (OOMMF) software package with finite difference micromagnetic simulations. The packing density of nanowires is changed with the diameter, number of nanowires and center-to-center spacing between the wires. The magnetization reversal mechanism and squareness of the hysteresis loops of the nanowire arrays are very sensitive to the packing density of nanowires. Clear steps and plateaux on the demagnetization are visible, which turns out that dipolar interactions among the wires have a significant influence on switching field.
|
Received: 04 June 2017
Revised: 30 September 2017
Accepted manuscript online:
|
PACS:
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
78.67.Uh
|
(Nanowires)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51401001, 51371002, and 51331003) and the International S&T Cooperation Program of China (Grant No. 2015DFG52020). |
Corresponding Authors:
MingYue
E-mail: yueming@bjut.edu.cn
|
Cite this article:
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴) Effects of dipolar interactions on magnetic properties of Co nanowire arrays 2017 Chin. Phys. B 26 117503
|
[1] |
Piraux L, Dubois S, Ferain E, Legras R, Ounadjela K, George J M, Maurice J L and Fert A 1997 J. Magn. Magn. Mater. 165 352
|
[2] |
Gao J H, Zhan Q F, He W, Sun D L and Cheng Z H 2005 Appl. Phys. Lett. 86 232506
|
[3] |
Wang T, Yue M, Li Y Q, Tokita M, Wu Q, Zhang D T and Zhang J X 2015 IEEE Magnetics Letters 6 5500304
|
[4] |
Li C Z and Lodder J C 1990 J. Magn. Magn. Mater. 88 236
|
[5] |
Dmytriiev O, Al-Jarah U A S, Gangmei P, Kruglyak V V, Hicken R J, Mahato B K, Rana B, Agrawal M, Barman A, Matefi-Tempfli M, Piraux L and Matefi-Tempfli S 2013 Phys. Rev. B 87 174429
|
[6] |
Suarez O J, Perez L M, Laroze D and Altbir D 2012 J. Magn. Magn. Mater. 324 1698
|
[7] |
Lü G, Cao X C, Zhang H, Qin Y F, Wang L H, Li G H, Gang F and Sun F W 2016 Acta Phys. Sin. 65 217503(in Chinese)
|
[8] |
Chen W B, Han M G, Zhou H, Ou Y and Deng L J 2010 Chin. Phys. B 19 087502
|
[9] |
Kittel C 1949 Rev. Mod. Phys. 21 541
|
[10] |
Pousthomis M, Anagnostopoulou E, Panagiotopoulos I, Boubekri R, Fang W Q, Ott F, Atmane K A, Piquemal J Y, Lacroix L M and Viau G 2015 Nano Research 8 2231
|
[11] |
Anagnostopoulou E, Grindi B, Lacroix L M, Ott F, Panagiotopoulos I and Viau G 2016 Nanoscale 8 4020
|
[12] |
Gandha K, Elkins K, Poudyal N, Liu X and Liu J P 2014 Sci. Rep. 4 5345
|
[13] |
Westphalen A, Remhof A and Zabel H 2008 J. Appl. Phys. 104 013906
|
[14] |
Vila L, Darques M, Encinas A, Ebels U, George J M, Faini G, Thiaville A and Piraux L 2009 Phys. Rev. B 79 172410
|
[15] |
Ott F, Maurer T, Chaboussant G, Soumare Y, Piquemal J Y and Viau G 2009 J. Appl. Phys. 105 013915
|
[16] |
Zighem F and Mercone S 2014 J. Appl. Phys. 116 193904
|
[17] |
Piccin R, Laroze D, Knobel M, Vargas P and Vazquez M 2007 EPL 78 67004
|
[18] |
Donahue M J and Porter D G 1999 OOMMF User's Guide:US Department of Commerce, Technology Administration, National Institute of Standards and Technology
|
[19] |
Zhang X C, Zhao G P, Xia J, Yue M, Yuan X H and Xie L H 2014 Chin. Phys. B 23 097504
|
[20] |
He S T, Chang S Q and Shi H G 2011 Chin. Phys. B 20 127503
|
[21] |
Hertel R 2001 J. Appl. Phys. 90 5752
|
[22] |
Chen D X, Brug J A and Goldfarb R B 1991 IEEE Trans. Magn. 27 3601
|
[23] |
Han N M, Guo G H, Zhang L M, Zhang G F and Song W B 2009 J. Mater. Sci. Technol. 25 151
|
[24] |
Jin W and Liu Y W 2007 Chin. Phys. 16 1731
|
[25] |
Lu H B, Han M G, Deng L J, Liang D F and Ou Y 2010 Acta Phys. Sin. 59 2090(in Chinese)
|
[26] |
Liu Y W and Zhang Z D 2012 Sci. China-Phys. Mech. Astron. 56 184
|
[27] |
Belemuk A M and Chui S T 2012 J. Phys. D:Appl. Phys. 45 125001
|
[28] |
Zhang W, Zhao G P, Yuan X H and Ye L N 2012 J. Magn. Magn. Mater. 324 4231
|
[29] |
Si W J, Zhao G P, Lai P, Ran N and Wu S Q 2016 Sci. Sin. Phys. Mech. Astron. 46 037501(in Chinese)
|
[30] |
Zhao G P and Wan X L 2016 J. Sichuan Norm. Univ. (Nat. Sci.) 39 136(in Chinese)
|
[31] |
Yuan X H, Zhao G P, Yue M, Ye L N, Xia J, Zhang X C and Chang J 2013 J. Magn. Magn. Mater. 343 245
|
[32] |
Xu J S, Zhao G P and Guo Nl 2011 J. Sichuan Norm. Univ. (Nat. Sci.) 34 854(in Chinese)
|
[33] |
Pathak S, Singh S, Gaur R and Sharma M 2014 J. Appl. Phys. 116 053904
|
[34] |
Knobel M, Sampaio L C, Sinnecker E H C P, Vargas P and Altbir D 2002 J. Magn. Magn. Mater. 249 60
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|