CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure |
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞) |
College of Physics, Jilin Normal University, Siping 136000, China |
|
|
Abstract We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite, resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.
|
Received: 31 July 2016
Revised: 25 September 2016
Accepted manuscript online:
|
PACS:
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
67.30.hj
|
(Spin dynamics)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2013M541286), the Science and Technology Planning Project of Jilin Province, China (Grant Nos. 20140520109JH and 20150414003GH), and the "Twelfth Five year" Scientific and Technological Research Project of Department of Education of Jilin Province, China. |
Corresponding Authors:
Zhong Hua
E-mail: huazhongnan@126.com
|
Cite this article:
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞) Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure 2017 Chin. Phys. B 26 017502
|
[1] |
Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E and Tricker D M 1999 Phys. Rev. Lett. 83 1042
|
[2] |
Shinjo T, Okuno T and Hassdorf R 2000 Science 289 930
|
[3] |
Devolder T, Kim J V, Crozat P, Chappert C, Manfrini M, Kampen M, van Roy W, Lagae L, Hrkac G and Schrefl T 2009 Appl. Phys. Lett. 95 012507
|
[4] |
Pigeau B, de Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W, Tiberkevich V S and Slavin A N 2010 Appl. Phys. Lett. 96 132506
|
[5] |
Kim D H, Rozhkova E A, Ulasov I V, Bader S D, Rajh T, Lesniak M S and Novosad V 2010 Nat. Mater. 9 165
|
[6] |
Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A and Ono T 2007 Nat. Mater. 6 270
|
[7] |
Liu Y, Gliga S, Hertel R and Schneider C M 2007 Appl. Phys. Lett. 91 112501
|
[8] |
Caputo J G, Gaididei Y, Mertens F G and Sheka D D 2007 Phys. Rev. Lett. 98 056604
|
[9] |
Liu Y W, He H and Zhang Z Z 2007 Appl. Phys. Lett. 91 242501
|
[10] |
Münzenberg M 2010 Physics 3 19
|
[11] |
Bedau D, Liu H, Bouzaglou J J, Kent A D and Sun J Z 2010 Appl. Phys. Lett. 96 022514
|
[12] |
Li X, Zhang Z Z, Jin Q Y and Liu Y W 2009 New J. Phys. 11 023027
|
[13] |
LiuY, Li H N, Hu Y and Du A 2013 Phys. Status. Solidi B 250 1578
|
[14] |
You C Y 2012 Appl. Phys. Lett. 100 252413
|
[15] |
Lee S C, Pi U H, Kim K, Kim K S, Shin J and Chung U In 2012 Sci. Rep. 2 1
|
[16] |
Berkov D V, Boon C T and Krivorotov I N 2011 Phys. Rev. B 83 054420
|
[17] |
Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D and Nowak U 2009 Phys. Rev. Lett. 103 117201
|
[18] |
Vomir M, Andrade L H F, Guidoni L, Beaurepaire E and Bigot J Y 2005 Phys. Rev. Lett. 94 237601
|
[19] |
Meng H and Wang J P 2006 Appl. Phys. Lett. 89 152509
|
[20] |
Li H N, Liu Y, Jia M and Du A 2015 J. Magn. Magn. Mater. 386 8
|
[21] |
Wang J B, Mu C P, Wang W W, Zhang B, Xia H Y, Liu Q F and Xue D S 2011 Appl. Phys. Lett. 99 032502
|
[22] |
Mu C P, Wang W W, Xia H Y, Zhang B, Liu Q F and Wang J B 2012 J. Nanosci. Nanotechnol. 12 7460
|
[23] |
Gliga S, Yan M, Hertel R and Schneider C M 2008 Phys. Rev. B 77 060404
|
[24] |
Choi Y S, Lee K S and Kim S K 2009 Phys. Rev. B 79 184424
|
[25] |
Mistral Q, Kampen M van, Hrkac G, Kim J V, Devolder T, Crozat P, Chappert C, Lagae L and Schrefl T 2008 Phys. Rev. Lett. 100 257201
|
[26] |
Manfrini M, Devolder T, Kim J V, Crozat P, Zerounian N, Chappert C, Roy W Van, Lagae L, Hrkac G and Schrefl T 2009 Appl. Phys. Lett. 95 192507
|
[27] |
Aranda G R, Gonzalez J M, del V J J and Guslienko K Y 2010 J. Appl. Phys. 108 123914
|
[28] |
Liu Y, Li H N, Hu Y and Du A 2012 J. Appl. Phys. 112 093905
|
[29] |
Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S and Pert A 2009 Nat. Nanotechnol. 4 528
|
[30] |
Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nat. Lett. 437 389
|
[31] |
Mancoff F B, Rizzo N D, Engel B N and Tehrani S 2005 Nat. Lett. 437 393
|
[32] |
Manfrini M, Kim J V, Watelot S P, Roy W V, Lagae L, Chappert C and Devolder T 2013 Nat. Nanotech. 265 1
|
[33] |
Sani S R, Persson J, Mohseni S M, Fallahi V and Åkerman J 2011 J. Appl. Phys. 109 07C913
|
[34] |
Li H N, Liu Y and Du A 2013 J. Magn. Magn. Mater. 341 45
|
[35] |
Liu Y, Li H N, Hu Y and Du A 2014 J. Solid. State. Commun. 193 61
|
[36] |
Li H N, Liu Y and Du A 2015 Chin. Phys. B 24 047501
|
[37] |
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
|
[38] |
Donahue M J and Porter D G OOMMF User's Guide, Version 1.2a5,http://math.nist.gov/oommf/
|
[39] |
Guslienko K Yu, Lee K S and Kim S K 2008 Phys. Rev. Lett. 100 027203
|
[40] |
Liu Y W, Hou Z W, Gliga S and Hertel R 2009 Phys. Rev. B 79 104435
|
[41] |
Lee K S, Guslienko K Y, Lee J Y and Kim S K 2007 Phys. Rev. B 76 174410
|
[42] |
Van Waeyenerge B, Puzic A, Stoll H, et al. 2006 Nat. Lett. 444 461
|
[43] |
Lee K S, Kim S K, Yu Y S, Choi Y S, Guslienko K Yu, Jung H and Fischer P 2008 Phys. Rev. Lett. 101 267206
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|