Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017502    DOI: 10.1088/1674-1056/26/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure

Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞)
College of Physics, Jilin Normal University, Siping 136000, China
Abstract  We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite, resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.
Keywords:  magnetic vortex core      polarity switching      spin-polarized current      micromagnetic simulations  
Received:  31 July 2016      Revised:  25 September 2016      Accepted manuscript online: 
PACS:  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  67.30.hj (Spin dynamics)  
  72.25.Ba (Spin polarized transport in metals)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2013M541286), the Science and Technology Planning Project of Jilin Province, China (Grant Nos. 20140520109JH and 20150414003GH), and the "Twelfth Five year" Scientific and Technological Research Project of Department of Education of Jilin Province, China.
Corresponding Authors:  Zhong Hua     E-mail:  huazhongnan@126.com

Cite this article: 

Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞) Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure 2017 Chin. Phys. B 26 017502

[1] Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E and Tricker D M 1999 Phys. Rev. Lett. 83 1042
[2] Shinjo T, Okuno T and Hassdorf R 2000 Science 289 930
[3] Devolder T, Kim J V, Crozat P, Chappert C, Manfrini M, Kampen M, van Roy W, Lagae L, Hrkac G and Schrefl T 2009 Appl. Phys. Lett. 95 012507
[4] Pigeau B, de Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W, Tiberkevich V S and Slavin A N 2010 Appl. Phys. Lett. 96 132506
[5] Kim D H, Rozhkova E A, Ulasov I V, Bader S D, Rajh T, Lesniak M S and Novosad V 2010 Nat. Mater. 9 165
[6] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A and Ono T 2007 Nat. Mater. 6 270
[7] Liu Y, Gliga S, Hertel R and Schneider C M 2007 Appl. Phys. Lett. 91 112501
[8] Caputo J G, Gaididei Y, Mertens F G and Sheka D D 2007 Phys. Rev. Lett. 98 056604
[9] Liu Y W, He H and Zhang Z Z 2007 Appl. Phys. Lett. 91 242501
[10] Münzenberg M 2010 Physics 3 19
[11] Bedau D, Liu H, Bouzaglou J J, Kent A D and Sun J Z 2010 Appl. Phys. Lett. 96 022514
[12] Li X, Zhang Z Z, Jin Q Y and Liu Y W 2009 New J. Phys. 11 023027
[13] LiuY, Li H N, Hu Y and Du A 2013 Phys. Status. Solidi B 250 1578
[14] You C Y 2012 Appl. Phys. Lett. 100 252413
[15] Lee S C, Pi U H, Kim K, Kim K S, Shin J and Chung U In 2012 Sci. Rep. 2 1
[16] Berkov D V, Boon C T and Krivorotov I N 2011 Phys. Rev. B 83 054420
[17] Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D and Nowak U 2009 Phys. Rev. Lett. 103 117201
[18] Vomir M, Andrade L H F, Guidoni L, Beaurepaire E and Bigot J Y 2005 Phys. Rev. Lett. 94 237601
[19] Meng H and Wang J P 2006 Appl. Phys. Lett. 89 152509
[20] Li H N, Liu Y, Jia M and Du A 2015 J. Magn. Magn. Mater. 386 8
[21] Wang J B, Mu C P, Wang W W, Zhang B, Xia H Y, Liu Q F and Xue D S 2011 Appl. Phys. Lett. 99 032502
[22] Mu C P, Wang W W, Xia H Y, Zhang B, Liu Q F and Wang J B 2012 J. Nanosci. Nanotechnol. 12 7460
[23] Gliga S, Yan M, Hertel R and Schneider C M 2008 Phys. Rev. B 77 060404
[24] Choi Y S, Lee K S and Kim S K 2009 Phys. Rev. B 79 184424
[25] Mistral Q, Kampen M van, Hrkac G, Kim J V, Devolder T, Crozat P, Chappert C, Lagae L and Schrefl T 2008 Phys. Rev. Lett. 100 257201
[26] Manfrini M, Devolder T, Kim J V, Crozat P, Zerounian N, Chappert C, Roy W Van, Lagae L, Hrkac G and Schrefl T 2009 Appl. Phys. Lett. 95 192507
[27] Aranda G R, Gonzalez J M, del V J J and Guslienko K Y 2010 J. Appl. Phys. 108 123914
[28] Liu Y, Li H N, Hu Y and Du A 2012 J. Appl. Phys. 112 093905
[29] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S and Pert A 2009 Nat. Nanotechnol. 4 528
[30] Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nat. Lett. 437 389
[31] Mancoff F B, Rizzo N D, Engel B N and Tehrani S 2005 Nat. Lett. 437 393
[32] Manfrini M, Kim J V, Watelot S P, Roy W V, Lagae L, Chappert C and Devolder T 2013 Nat. Nanotech. 265 1
[33] Sani S R, Persson J, Mohseni S M, Fallahi V and Åkerman J 2011 J. Appl. Phys. 109 07C913
[34] Li H N, Liu Y and Du A 2013 J. Magn. Magn. Mater. 341 45
[35] Liu Y, Li H N, Hu Y and Du A 2014 J. Solid. State. Commun. 193 61
[36] Li H N, Liu Y and Du A 2015 Chin. Phys. B 24 047501
[37] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[38] Donahue M J and Porter D G OOMMF User's Guide, Version 1.2a5,http://math.nist.gov/oommf/
[39] Guslienko K Yu, Lee K S and Kim S K 2008 Phys. Rev. Lett. 100 027203
[40] Liu Y W, Hou Z W, Gliga S and Hertel R 2009 Phys. Rev. B 79 104435
[41] Lee K S, Guslienko K Y, Lee J Y and Kim S K 2007 Phys. Rev. B 76 174410
[42] Van Waeyenerge B, Puzic A, Stoll H, et al. 2006 Nat. Lett. 444 461
[43] Lee K S, Kim S K, Yu Y S, Choi Y S, Guslienko K Yu, Jung H and Fischer P 2008 Phys. Rev. Lett. 101 267206
[1] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[2] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[3] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[4] Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction
Zhou-Zhou Sun(孙周洲), Yu Yang(杨玉), J Schliemann. Chin. Phys. B, 2018, 27(6): 067501.
[5] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[6] Photon-mediated spin-polarized current in a quantum dot under thermal bias
Feng Chi(迟锋), Liming Liu(刘黎明), Lianliang Sun(孙连亮). Chin. Phys. B, 2017, 26(3): 037304.
[7] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[8] Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions
Hossein Karbaschi, Gholam Reza Rashedi. Chin. Phys. B, 2015, 24(4): 047305.
[9] Trajectory and frequency of vortex gyration in a multi-nanocontact geometry
Li Hua-Nan (李化南), Liu Yan (柳艳), Jia Min (贾敏), Du An (杜安). Chin. Phys. B, 2015, 24(4): 047501.
[10] Spin-polarized current in double quantum dots
Li Ai-Xian (李爱仙), Duan Su-Qing (段素青 ). Chin. Phys. B, 2012, 21(11): 117201.
[11] Antiresonance induced spin-polarized current generation
Yin Sun(尹笋), Min Wen-Jing(闵文静), Gao Kun(高琨) Xie Shi-Jie(解士杰), and Liu De-Sheng(刘德胜) . Chin. Phys. B, 2011, 20(12): 127201.
No Suggested Reading articles found!