Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127503    DOI: 10.1088/1674-1056/27/12/127503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Realization of artificial skyrmion in CoCrPt/NiFe bilayers

Yi Liu(刘益)1,2, Yong-Ming Luo(骆泳铭)2, Zheng-Hong Qian(钱正洪)1,2, Jian-Guo Zhu(朱建国)1
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China;
2 Center for Integrated Spintronic Device, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  

Skyrmion, as a quasi-particle structure, has attracted much attention due to its potential applications in future spintronic devices. Artificial skyrmion structure has aroused great interest as it can be stabilized at room temperature, without needing to incorporate materials with Dzyaloshinskii-Moriya interaction (DMI) into it. In this paper, it is found that the artificial skyrmion structure can be realized in CoCrPt/NiFe bilayers by micromagnetic simulations. The critical magnetic field of the core decreases as the diameter of the NiFe soft magnetic layer increases. The artificial skyrmion has excellent topological protection, and the critical magnetic field of plane is about 76 mT (760 Oe, 1 Oe=79.5775 A·m-1). The external magnetic field plays a key role in determining the core diameter of the skyrmion, and the artificial skyrmion can be realized in CoCrPt/Cu/CoCrPt/NiFe four-layer with a diameter of 13 nm.

Keywords:  bilayers      artificial skyrmion      micromagnetic simulations  
Received:  18 July 2018      Revised:  30 September 2018      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.78.Cd (Micromagnetic simulations ?)  
  75.50.Ww (Permanent magnets)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701), the National Natural Science Foundation of China (Grant No. 51332003), and the Sichuan Science and Technology Program, China (Grant No. 2018G20140).

Corresponding Authors:  Zheng-Hong Qian, Jian-Guo Zhu     E-mail:  zqian@hdu.edu.cn;nic0400@scu.edu.cn

Cite this article: 

Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国) Realization of artificial skyrmion in CoCrPt/NiFe bilayers 2018 Chin. Phys. B 27 127503

[1] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[2] Skyrme T H R 1962 Nucl. Phys. 31 556
[3] Rössler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[4] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[5] Kanazawa N, Seki S and Tokura Y 2017 Adv. Mater. 29 1603227
[6] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[7] Liu Y and Li Y 2015 Chin. Phys. B 24 017506
[8] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[9] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[10] Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1
[11] Liu Y and Zang J 2018 Acta Phys. Sin. 67 131201 (in Chinese)
[12] Finocchio G, Büttner F, Tomasello R, Carpentieri M and Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001
[13] Ao P 2017 Int. J. Mod. Phys. B 31 1780001
[14] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[15] Liang X, Zhao L, Qiu L, Li S, Ding L, Feng Y, Zhang X, Zhou Y and Zhao G 2018 Acta Phys. Sin. 67 137510 (in Chinese)
[16] Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weig, M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501
[17] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weig, M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[18] Moriya T 1960 Phys. Rev. 120 91
[19] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[20] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Phys. Rev. Lett. 110 167201
[21] Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C and Qiu Z Q 2014 Nat. Commun. 5 4704
[22] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A and Liu K 2015 Nat. Commun. 6 8462
[23] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D and Zhan Q F 2014 Phys. Rev. B 90 174411
[24] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N and Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856
[25] Cheng X M, Li Z Y, Yang X F, Li Q, Li Z, Jin F, Lin G Q 2006 J. Magn. Magn. Mater. 303 e137
[26] Bai R, Qian Z, Zhu H, Li Q, Li Y, Peng Y and Huo D 2017 IEEE Trans. Magn. 53 4400104
[27] Hu H, Qiu X and Shi Z 2013 Chin. Phys. Lett. 30 027501
[28] Shinjo T, Okuno T, Hassdorf R, Shigeto K and Ono T 2000 Science 289 930
[29] Metlov K L and Guslienko K Y 2002 J. Magn. Magn. Mater. 242-245 1015 (in Chinese)
[30] Li H, Hua Z and Li D 2017 Chin. Phys. B 26 017502
[31] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404
[32] Donahue M J and Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376 National Institute of Standards and Technology Gaithersburg, MD (Sept 1999)
[33] Peng Y, Zhao G P, Morvan F J, Wu S Q and Yue M 2017 J. Magn. Magn. Mater. 422 57
[34] Li P, Wu B, Cheng X and Yang X 2008 Trans. Nonferrous Met. Soc. Chin. 18 1664 (in Chinese)
[1] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[2] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[3] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[4] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[5] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[6] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong (时钟), Du Jun (杜军), Zhou Shi-Ming (周仕明). Chin. Phys. B, 2014, 23(2): 027503.
[7] Unified nonequilibrium dynamical theory for exchange bias and training effects
Zhang Kai-Cheng(张开成) and Liu Bang-Gui(刘邦贵). Chin. Phys. B, 2009, 18(9): 3960-3965.
[8] The structure dependence of exchange bias in ferromagnetic/antiferromagnetic bilayers
Xu Xiao-Yong(许小勇), Wang Mao-Hua(王茂华), and Hu Jing-Guo(胡经国) . Chin. Phys. B, 2008, 17(4): 1443-1447.
[9] Lipid membrane: inelastic deformation of surface structure by an atomic force microscope
Zhang Jing (张静), Sun Run-Guang (孙润广). Chin. Phys. B, 2002, 11(8): 776-784.
No Suggested Reading articles found!