Special Issue:
TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
|
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences |
Prev
Next
|
|
|
Lorentz transmission electron microscopy studies on topological magnetic domains |
Li-Cong Peng(彭丽聪)1,2, Ying Zhang(张颖)1, Shu-Lan Zuo(左淑兰)1,2, Min He(何敏)1,2, Jian-Wang Cai(蔡建旺)1,2, Shou-Guo Wang(王守国)3, Hong-Xiang Wei(魏红祥)1, Jian-Qi Li(李建奇)1,2, Tong-Yun Zhao(赵同云)1, Bao-Gen Shen(沈保根)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Lorentz transmission electron microscopy (TEM) is a powerful tool to study the crystal structures and magnetic domain structures in correlation with novel physical properties. Nanometric topological magnetic configurations such as vortices, bubbles, and skyrmions have received enormous attention from the viewpoint of both fundamental science and potential applications in magnetic logic and memory devices, in which understanding the physical properties of magnetic nanodomains is essential. In this review article, several magnetic imaging methods in Lorentz TEM including the Fresnel and Foucault modes, electron holography, and differential phase contrast (DPC) techniques are discussed, where the novel properties of topological magnetic domains are well addressed. In addition, in situ Lorentz TEM demonstrates that the topological domains can be efficiently manipulated by electric currents, magnetic fields, and temperatures, exhibiting novel phenomena under external fields, which advances the development of topological nanodomain-based spintronics.
|
Received: 19 April 2018
Revised: 09 May 2018
Accepted manuscript online:
|
PACS:
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFB0700902),the National Natural Science Foundation of China (Grant Nos.51590880,11674379,51431009,11674373,and 51625101),and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2015004). |
Corresponding Authors:
Ying Zhang
E-mail: zhangy@iphy.ac.cn
|
Cite this article:
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根) Lorentz transmission electron microscopy studies on topological magnetic domains 2018 Chin. Phys. B 27 066802
|
[1] |
Hale M E, Fuller H W and Rubinstein H 1959 J. Appl. Phys. 30 789
|
[2] |
Chapman J N and Scheinfein M R 1999 J. Magn. Magn. Mater. 200 729
|
[3] |
Chapman J N 1989 Mater. Sci. Eng. B 3 355
|
[4] |
Alex Hubert R S 2009 Magnetic Domains (New York:Springer)
|
[5] |
Wiesendanger R, Mochizuki M, Nagaosa N, MacDonald A H and Stamps R L 2016 Nat. Rev. Mater. 1 16044
|
[6] |
Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
|
[7] |
Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
|
[8] |
Kläui M, Laufenberg M, Heyne L, Backes D, Rüdiger U, Vaz C A F, Bl, J A C, Heyderman L J, Cherifi S, Locatelli A, Mentes T O and Aballe L 2006 Appl. Phys. Lett. 88 2004
|
[9] |
Park J P, Eames P, Engebretson D M, Berezovsky J and Crowell P A 2003 Phys. Rev. B 67 020403(R)
|
[10] |
Hertel R and Schneider C M 2006 Phys. Rev. Lett. 97 177202
|
[11] |
Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
|
[12] |
Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
|
[13] |
Morikawa D, Yu X Z, Kaneko Y, Tokunaga Y, Nagai T, Kimoto K, Arima T and Tokura Y 2015 Appl. Phys. Lett. 107 212401
|
[14] |
Yu X, Tokunaga Y, Taguchi Y and Tokura Y 2017 Adv. Mater. 29 1603958
|
[15] |
Fukumura T, Sugawara H, Hasegawa T, Tanaka K, Sakaki H, Kimura T and Tokura Y 1999 Science 284 1969
|
[16] |
Yu X, Degrave J P, Hara Y, Hara T, Jin S and Tokura Y 2013 Nano Lett. 13 3755
|
[17] |
Peng L, Zhang Y, He M, Ding B, Wang W, Li J, Cai J, Wang S, Wu G and Shen B 2018 J. Phys. Condens. Matter 30 65803
|
[18] |
Peng L, Zhang Y, Wang W, He M, Li L, Ding B, Li J, Sun Y, Zhang X G, Cai J, Wang S, Wu G and Shen B 2017 Nano Lett. 17 7075
|
[19] |
Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
|
[20] |
Yu X, Morikawa D, Tokunaga Y, Kubota M, Kurumaji T, Oike H, Nakamura M, Kagawa F, Taguchi Y, Arima T H, Kawasaki M and Tokura Y 2017 Adv. Mater. 29 1606178
|
[21] |
Legr, W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V and Fert A 2017 Nano Lett. 17 2703
|
[22] |
Peng L, Zhang Y, He M, Ding B, Wang W, Tian H, Li J, Wang S, Cai J, Wu G, Liu J P, Kramer M J and Shen B 2017 npj Quantum Mater. 2 30
|
[23] |
Schofield M A, Beleggia M, Zhu Y and Pozzi G 2008 Ultramicroscopy 108 625
|
[24] |
Chapman J N 1984 J. Phys. D:Appl. Phys. 17 623
|
[25] |
Kovács A, Li Z A, Shibata K and Dunin-Borkowski R E 2016 Resolut. Discov. 1 2
|
[26] |
Ploessl R, Chapman J N, Scheinfein M R, Blue J L, Mansuripur M and Hoffmann H 1993 J. Appl. Phys. 74 7431
|
[27] |
D U H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y and Tian M 2015 Nat. Commun. 6 8504
|
[28] |
Volkov V V and Zhu Y 2004 Ultramicroscopy 98 271
|
[29] |
Petford-Long A K and Chapman J N 2005 Magnetic Microscopy of Nanostructures (New York:Springer)
|
[30] |
Ishizuka K and Allman B 2005 J. Electron. Microsc. 54 191
|
[31] |
McVitie S, McGrouther D, McFadzean S, MacLaren D A, O'Shea K J and Benitez M J 2015 Ultramicroscopy 152 57
|
[32] |
Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y and Shibata N 2016 Sci. Adv. 2 e1501280
|
[33] |
Matsumoto T, So Y G, Kohno Y, Ikuhara Y and Shibata N 2018 Nano Lett. 18 754
|
[34] |
Chapman J N, Johnston A B, Heyderman L J, McVitie S and Nicholson W A P 1994 IEEE Trans. Magn. 30 4479
|
[35] |
Chapman J N, Ploessl R and Donnet D M 1992 Ultramicroscopy 47 331
|
[36] |
Gabor D 1948 Nature 161 777
|
[37] |
Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A and Tokura Y 2014 Nat. Nanotechnol. 9 337
|
[38] |
Shindo D and Murakami Y 2008 J. Phys. D. Appl. Phys. 41 183002
|
[39] |
Dunin-Borkowski R E, Kasama T, Wei A, Tripp S L, Hytch M J, Snoeck E, Harrison R J and Putnis A 2004 Microsc. Res. Tech. 64 390
|
[40] |
Ngo D T and Kuhn L T 2016 Adv. Nat. Sci. Nanosci. Nanotechnol. 7 045001
|
[41] |
Midgley P A and Dunin-Borkowski R E 2009 Nat. Mater. 8 271
|
[42] |
Ngo D T and McVitie S 2011 Ultramicroscopy 111 1276
|
[43] |
Midgley P A 2001 Micron 32 167
|
[44] |
Lichte H, Formanek P, Lenk A, Linck M, Matzeck C, Lehmann M and Simon P 2007 Ann. Rev. Mater. Res. 37 539
|
[45] |
Armstrong M A 1983 Basic Topology (New York:Springer)
|
[46] |
Aharonov Y and Bohm D 1961 Phys. Rev. 123 1511
|
[47] |
Berry M V 1984 Proc. R. Soc. London A 392 45
|
[48] |
Josephson B D 1962 Phys. Lett. 1 251
|
[49] |
Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
|
[50] |
Laughlin R B 1983 Phys. Rev. Lett. 50 1395
|
[51] |
Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
|
[52] |
Shoenberg D 1988 J. Phys. F:Met. Phys. 18 49
|
[53] |
Streubel R, Han L, Im M Y, Kronast F, Rößler U K, Radu F, Abrudan R, Lin G, Schmidt O G, Fischer P and Makarov D 2015 Sci. Rep. 5 8787
|
[54] |
Seki S and Mochizuki M 2016 Skyrmions in Magnetic Materials (New York:Springer)
|
[55] |
Kézsmárki I, Bordács S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V and Loidl A 2015 Nat. Mater. 14 1116
|
[56] |
Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E and Šikola T 2013 Nat. Nanotechnol. 8 341
|
[57] |
Togawa Y, Kimura T, Harada K, Akashi T, Matsuda T, Tonomura A and Otani Y 2008 Proc. SPIE 7036 703617
|
[58] |
Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese)
|
[59] |
Han B S 2017 Physics 46 352 (in Chinese)
|
[60] |
Li H N, Hua Z and Li D F 2017 Chin. Phys. B 26 017502
|
[61] |
Zuo S, Zhang M, Li R, Zhang Y, Peng L, Xiong J, Liu D, Zhao T, Hu F, Shen B and Sun J 2017 Acta Mater. 140 465 (in Chinese)
|
[62] |
Huber E E, Smith D O and Goodenough J B 1958 J. Appl. Phys. 29 294
|
[63] |
Skyrme T H R 1961 Proc. R. Soc. A:Math. Phys. Eng. Sci. 260 127
|
[64] |
Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Ronnow H M, Tokura Y and Taguchi Y 2016 Nat. Mater. 15 1237
|
[65] |
Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S and Tokura Y 2012 Nano Lett. 12 1673
|
[66] |
Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
|
[67] |
Li J 2017 Physics 46 281 (in Chinese)
|
[68] |
Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1
|
[69] |
Ding B and Wang W H 2018 Physics 47 15 (in Chinese)
|
[70] |
Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y and Tokura Y 2014 Nat. Commun. 5 3198
|
[71] |
Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B and Zhang X X 2016 Adv. Mater. 28 6887
|
[72] |
Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y and Kagawa F 2016 Nat. Phys. 12 62
|
[73] |
Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A, Velthuis S G E, Hoffmann A, te Velthuis S G E and Hoffmann A 2015 Science 349 283
|
[74] |
Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636
|
[75] |
Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and Te Velthuis S G E 2017 Nat. Phys. 13 162
|
[76] |
Saratz N, Lichtenberger A, Portmann O, Ramsperger U, Vindigni A and Pescia D 2010 Phys. Rev. Lett. 104 77203
|
[77] |
Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y and Yang H 2017 Nat. Commun. 8 14761
|
[78] |
He M, Li G, Zhu Z, Zhang Y, Peng L, Li R, Li J, Wei H, Zhao T, Zhang X G, Wang S, Lin S Z, Gu L, Yu G, Cai J and Shen B Phys. Rev. B (Accepted)
|
[79] |
He M, Peng L, Zhu Z, Li G, Cai J, Li J, Wei H, Gu L, Wang S, Zhao T, Shen B and Zhang Y 2017 Appl. Phys. Lett. 111 202403
|
[80] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[81] |
Grundy P J and Tebble R S 1968 Adv. Phys. 17 153
|
[82] |
Grundy P J and Herd S R 1973 Phys. Status Solidi 20 295
|
[83] |
Zuo S L, Zhang Y, Peng L C, Zhao X, Li R, Li H, Xiong J F, He M, Zhao T Y, Sun J R, Hu F X and Shen B G 2018 Nanoscale 10 2260
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|