Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114601    DOI: 10.1088/1674-1056/25/11/114601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Molecular dynamics simulation of structural change at metal/semiconductor interface induced by nanoindenter

Bing-Bing Zhao(赵兵兵)1,2, Ying Wang(王影)1,2, Chang Liu(刘畅)1,2, Xiao-Chun Wang(王晓春)1,2
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Abstract  The structures of the Si/Cu heterogenous interface impacted by a nanoindenter with different incident angles and depths are investigated in detail using molecular dynamics simulation. The simulation results suggest that for certain incident angles, the nanoindenter with increasing depth can firstly increase the stress of each atom at the interface and it then introduces more serious structural deformation of the Si/Cu heterogenous interface. A nanoindenter with increasing incident angle (absolute value) can increase the length of the Si or Cu extended atom layer. It is worth mentioning that when the incident angle of the nanoindenter is between -45° and 45°, these Si or Cu atoms near the nanoindenter reach a stable state, which has a lower stress and a shorter length of the Si or Cu extended atom layer than those of the other incident angles. This may give a direction to the planarizing process of very large scale integration circuits manufacture.
Keywords:  molecular dynamics      metal/semiconductor interface      reconstruction      nanoindenter  
Received:  16 January 2016      Revised:  27 May 2016      Accepted manuscript online: 
PACS:  46.55.+d (Tribology and mechanical contacts)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
Fund: Project supported by the Tribology Science Fund of State Key Laboratory of Tribology, China (Grant No. SKLTKF12A01), the National Natural Science Foundation of China (Grant No. 11474123), the Natural Science Foundation of Jilin Province of China (Grant No. 20130101011JC), and the Fundamental Research Funds for Central Universities at Jilin University, China.
Corresponding Authors:  Xiao-Chun Wang     E-mail:  wangxiaochun@jlu.edu.cn

Cite this article: 

Bing-Bing Zhao(赵兵兵), Ying Wang(王影), Chang Liu(刘畅), Xiao-Chun Wang(王晓春) Molecular dynamics simulation of structural change at metal/semiconductor interface induced by nanoindenter 2016 Chin. Phys. B 25 114601

[1] Vaz C, Steinmuller S, Moutafis C, Bland J and Babkevich A Y 2007 Surface Science 601 1377
[2] Hwang S F, Li Y H and Hong Z H 2012 Comput. Mater. Sci. 56 85
[3] Pietsch G, Higashi G and Chabal Y 1994 Appl. Phys. Lett. 64 3115
[4] Runnels S R and Eyman L M 1994 J. Electrochem. Soc. 141 1698
[5] Ye Y, Biswas R, Bastawros A and Chandra A 2002 Appl. Phys. Lett. 81 1875
[6] Ye Y, Biswas R, Morris J, Bastawros A and Chandra A 2003 Nanotech-nology 14 390
[7] Han X 2007 Appl. Surf. Sci. 253 6211
[8] Han X, Hu Y and Yu S 2009 Appl. Phys. A 95 899
[9] Si L, Guo D, Luo J and Lu X 2010 J. Appl. Phys. 107 064310
[10] Si L, Guo D, Luo J, Lu X and Xie G 2011 J. Appl. Phys. 109 084335
[11] Plimpton S 1995 Journal of Computational Physics 117 1
[12] Tersoff J 1988 Phys. Rev. B 37 6991
[13] Tersoff J 1989 Phys. Rev. B 39 5566
[14] Nord J, Albe K, Erhart P and Nordlund K 2003 J. Phys.:Condens. Matter 15 5649
[15] Foiles S, Baskes M and Daw M 1986 Phys. Rev. B 33 7983
[16] Ackland G, Mendelev M, Srolovitz D, Han S and Barashev A 2004 J. Phys.:Condens. Matter 16 S2629
[17] Ackland G and Fox H 2005 J. Phys.:Condens. Matter 17 1851
[18] Daw M S and Baskes M 1983 Phys. Rev. Lett. 50 1285
[19] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[20] Finnis M and Sinclair J 1984 Philosophical Magazine A 50 45
[21] Stukowski A, Sadigh B, Erhart P and Caro A 2009 Modelling and Sim-ulation in Materials Science and Engineering 17 075005
[22] Girifalco L A and Weizer V G 1959 Phys. Rev. 114 687
[23] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[24] Shinoda W, Shiga M and Mikami M 2004 Phys. Rev. B 69 134103
[25] Martyna G J, Tobias D J and Klein M L 1994 The Journal of Chemical Physics 101 4177
[26] Tuckerman M E, Alejandre J, López-Rendón R, Jochim A L and Martyna G J 2006 J. Phys. A:Math. Gen. 39 5629
[27] Nosé S 1984 The Journal of Chemical Physics 81 511
[28] Hoover W G 1985 Phys. Rev. A 31 1695
[29] Bodapati A, Treacy M M J, Falk M, Kieffer J and Keblinski P 2006 J. Non-Cryst. Solids 352 116
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!