Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096203    DOI: 10.1088/1674-1056/24/9/096203
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

ReaxFF molecular dynamics study on oxidationbehavior of 3C-SiC: Polar face effects

Sun Yu (孙瑜)a, Liu Yi-Jun (刘轶军)a b, Xu Fei (徐绯)a
a Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi'an 710072, China;
b Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0072, USA
Abstract  

The oxidation of nanoscale 3C-SiC involving four polar faces (C(100), Si(100), C(111), and Si(111)) is studied by means of a reactive force field molecular dynamics (ReaxFF MD) simulation. It is shown that the consistency of 3C-SiC structure is broken over 2000 K and the low-density carbon chains are formed within SiC slab. By analyzing the oxygen concentration and fitting to rate theory, activation barriers for C(100), Si(100), C(111), and Si(111) are found to be 30.1, 35.6, 29.9, and 33.4 kJ·mol-1. These results reflect lower oxidative stability of C-terminated face, especially along [111] direction. Compared with hexagonal polytypes of SiC, cubic phase may be more energy-favorable to be oxidized under high temperature, indicating polytype effect on SiC oxidation behavior.

Keywords:  molecular dynamics      ReaxFF field      3C-SiC      oxidation  
Received:  09 March 2015      Revised:  07 April 2015      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  81.16.Pr (Micro- and nano-oxidation)  
  61.46.-w (Structure of nanoscale materials)  
Fund: 

Project supported by the 111 Project (Grant No. B07050) and the National Natural Science Foundation of China (Grant No. 11402206).

Corresponding Authors:  Sun Yu     E-mail:  npuyusun@gmail.com

Cite this article: 

Sun Yu (孙瑜), Liu Yi-Jun (刘轶军), Xu Fei (徐绯) ReaxFF molecular dynamics study on oxidationbehavior of 3C-SiC: Polar face effects 2015 Chin. Phys. B 24 096203

[1] Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485
[2] Zhang X D, Cui S X and Shi H F 2014 Chin. Phys. Lett. 31 016401
[3] Dou Y K, Qi X, Jin H B, Cao M S, Usman Z and Hou Z L 2012 Chin. Phys. Lett. 29 077701
[4] Opila E J and Hann R E 1997 J. Am. Ceram. Soc. 80 197
[5] Opila E J 1999 J. Am. Ceram. Soc. 82 625
[6] Williams S, Curry D M, Chao D C and Pham V T 1995 J. Thermophys. Heat Transfer 9 478
[7] Li X H, Yan Q Z, Mi Y Y, Han Y J, Wen X and Ge C C 2015 Chin. Phys. B 24 026103
[8] Powell J, Petit J, Edgar J, Jenkins I, Matus L, Choyke W, Clemen L, Yoganathan M, Yang J and Pirouz P 1991 Appl. Phys. Lett. 59 183
[9] Gupta S K and Akhtar J 2011 Silicon Carbide-Materials, Processing and Applications in Electronic Devices (InTech) pp. 207-230
[10] Deng J, Liu W, Du H, Cheng H and Li Y 2001 J. Mater. Sci. Technol. 17 543
[11] Amy F and Chabal Y J 2003 J. Chem. Phys. 119 6201
[12] Shishkin Y, Oborina E, Maltsev A, Saddow S and Hoff A 2006 J. Phys. D: Appl. Phys. 39 2692
[13] Lilov S 2007 Cryst. Res. Technol. 42 1054
[14] Yamamoto T, Hijikata Y, Yaguchi H and Yoshida S 2008 Jpn. J. Appl. Phys. 47 7803
[15] Hijikata Y, Yaguchi H and Yoshida S 2009 Appl. Phys. Express 2 021203
[16] Zhang Y, Li H, Qiang X and Li K 2010 J. Mater. Sci. Technol. 26 1139
[17] Yao X, Li H, Zhang Y and Wang Y 2014 J. Mater. Sci. Technol. 30 123
[18] Suo T, Fan X, Hu G, Li Y, Tang Z and Xue P 2013 Carbon 62 481
[19] Wang J, Zhang L, Zeng Q, Vignoles G L, Cheng L and Guette A 2009 Phys. Rev. B 79 125304
[20] Wang J, Zhang L, Zeng Q, Vignoles G L and Cheng L 2010 J. Phys. Condens. Matter 22 265003
[21] Liu Y, Su K H, Zeng Q F, Cheng L F and Zhang L T 2012 Theor. Chem. Acc. 3 1
[22] Devynck F, Giustino F, Broqvist P and Pasquarello A 2007 Phys. Rev. B 76 075351
[23] Deák P, Gali A, Knaup J, Hajnal Z, Frauenheim T, Ordejón P and Choyke J 2003 Physica B 340 1069
[24] He X M, Chen Z M and Li L B 2015 Chin. Phys. Lett. 32 036801
[25] Ye Y, Zhang L, Cheng L and Xu Y 2003 J. Mater. Sci. Technol. 19 29
[26] Cheng T, Wen Y and Hawk J A 2014 J. Phys. Chem. C 118 1269
[27] Sun J B, Tang X Y, Yang Z W, Shi Y and Zhao Y 2014 Chin. Phys. B 23 066103
[28] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
[29] Newsome D A, Sengupta D, Foroutan H, Russo M F and van Duin A C T 2012 J. Phys. Chem. C 116 16111
[30] Newsome D A, Sengupta D and van Duin A C T 2013 J. Phys. Chem. C 117 5014
[31] Song Y, Dhar S, Feldman L, Chung G and Williams J 2004 J. Appl. Phys. 95 4953
[32] Aktulga H M, Fogarty J C, Pandit S A and Grama A Y 2012 Parallel Comput. 38 245
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Castro-Marcano F, Kamat A M, Russo Jr M F, van Duin A C T and Mathews J P 2012 Combust. Flame 159 1272
[35] Rys A, Singh N and Cameron M 1995 J. Electrochem. Soc. 142 1318
[36] Chen X, Ning L, Wang Y, Li J, Xu X, Hu X and Jiang M 2009 J. Mater. Sci. Technol. 25 115
[37] Charpentier L, Balat-Pichelin M and Audubert F 2010 J. Eur. Ceram. Soc. 30 2653
[38] Charpentier L, Balat-Pichelin M, Glénat H, Bêche E, Laborde E and Audubert F 2010 J. Eur. Ceram. Soc. 30 2661
[39] Kim Y, Min K, Shim J and Kim D J 2012 J. Eur. Ceram. Soc. 32 3611
[40] Jagodzinski H 1949 Acta Crystallogr. 2 201
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[10] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[15] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
No Suggested Reading articles found!