CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
ReaxFF molecular dynamics study on oxidationbehavior of 3C-SiC: Polar face effects |
Sun Yu (孙瑜)a, Liu Yi-Jun (刘轶军)a b, Xu Fei (徐绯)a |
a Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi'an 710072, China;
b Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0072, USA |
|
|
Abstract The oxidation of nanoscale 3C-SiC involving four polar faces (C(100), Si(100), C(111), and Si(111)) is studied by means of a reactive force field molecular dynamics (ReaxFF MD) simulation. It is shown that the consistency of 3C-SiC structure is broken over 2000 K and the low-density carbon chains are formed within SiC slab. By analyzing the oxygen concentration and fitting to rate theory, activation barriers for C(100), Si(100), C(111), and Si(111) are found to be 30.1, 35.6, 29.9, and 33.4 kJ·mol-1. These results reflect lower oxidative stability of C-terminated face, especially along [111] direction. Compared with hexagonal polytypes of SiC, cubic phase may be more energy-favorable to be oxidized under high temperature, indicating polytype effect on SiC oxidation behavior.
|
Received: 09 March 2015
Revised: 07 April 2015
Accepted manuscript online:
|
PACS:
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
81.16.Pr
|
(Micro- and nano-oxidation)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the 111 Project (Grant No. B07050) and the National Natural Science Foundation of China (Grant No. 11402206). |
Corresponding Authors:
Sun Yu
E-mail: npuyusun@gmail.com
|
Cite this article:
Sun Yu (孙瑜), Liu Yi-Jun (刘轶军), Xu Fei (徐绯) ReaxFF molecular dynamics study on oxidationbehavior of 3C-SiC: Polar face effects 2015 Chin. Phys. B 24 096203
|
[1] |
Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485
|
[2] |
Zhang X D, Cui S X and Shi H F 2014 Chin. Phys. Lett. 31 016401
|
[3] |
Dou Y K, Qi X, Jin H B, Cao M S, Usman Z and Hou Z L 2012 Chin. Phys. Lett. 29 077701
|
[4] |
Opila E J and Hann R E 1997 J. Am. Ceram. Soc. 80 197
|
[5] |
Opila E J 1999 J. Am. Ceram. Soc. 82 625
|
[6] |
Williams S, Curry D M, Chao D C and Pham V T 1995 J. Thermophys. Heat Transfer 9 478
|
[7] |
Li X H, Yan Q Z, Mi Y Y, Han Y J, Wen X and Ge C C 2015 Chin. Phys. B 24 026103
|
[8] |
Powell J, Petit J, Edgar J, Jenkins I, Matus L, Choyke W, Clemen L, Yoganathan M, Yang J and Pirouz P 1991 Appl. Phys. Lett. 59 183
|
[9] |
Gupta S K and Akhtar J 2011 Silicon Carbide-Materials, Processing and Applications in Electronic Devices (InTech) pp. 207-230
|
[10] |
Deng J, Liu W, Du H, Cheng H and Li Y 2001 J. Mater. Sci. Technol. 17 543
|
[11] |
Amy F and Chabal Y J 2003 J. Chem. Phys. 119 6201
|
[12] |
Shishkin Y, Oborina E, Maltsev A, Saddow S and Hoff A 2006 J. Phys. D: Appl. Phys. 39 2692
|
[13] |
Lilov S 2007 Cryst. Res. Technol. 42 1054
|
[14] |
Yamamoto T, Hijikata Y, Yaguchi H and Yoshida S 2008 Jpn. J. Appl. Phys. 47 7803
|
[15] |
Hijikata Y, Yaguchi H and Yoshida S 2009 Appl. Phys. Express 2 021203
|
[16] |
Zhang Y, Li H, Qiang X and Li K 2010 J. Mater. Sci. Technol. 26 1139
|
[17] |
Yao X, Li H, Zhang Y and Wang Y 2014 J. Mater. Sci. Technol. 30 123
|
[18] |
Suo T, Fan X, Hu G, Li Y, Tang Z and Xue P 2013 Carbon 62 481
|
[19] |
Wang J, Zhang L, Zeng Q, Vignoles G L, Cheng L and Guette A 2009 Phys. Rev. B 79 125304
|
[20] |
Wang J, Zhang L, Zeng Q, Vignoles G L and Cheng L 2010 J. Phys. Condens. Matter 22 265003
|
[21] |
Liu Y, Su K H, Zeng Q F, Cheng L F and Zhang L T 2012 Theor. Chem. Acc. 3 1
|
[22] |
Devynck F, Giustino F, Broqvist P and Pasquarello A 2007 Phys. Rev. B 76 075351
|
[23] |
Deák P, Gali A, Knaup J, Hajnal Z, Frauenheim T, Ordejón P and Choyke J 2003 Physica B 340 1069
|
[24] |
He X M, Chen Z M and Li L B 2015 Chin. Phys. Lett. 32 036801
|
[25] |
Ye Y, Zhang L, Cheng L and Xu Y 2003 J. Mater. Sci. Technol. 19 29
|
[26] |
Cheng T, Wen Y and Hawk J A 2014 J. Phys. Chem. C 118 1269
|
[27] |
Sun J B, Tang X Y, Yang Z W, Shi Y and Zhao Y 2014 Chin. Phys. B 23 066103
|
[28] |
van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
|
[29] |
Newsome D A, Sengupta D, Foroutan H, Russo M F and van Duin A C T 2012 J. Phys. Chem. C 116 16111
|
[30] |
Newsome D A, Sengupta D and van Duin A C T 2013 J. Phys. Chem. C 117 5014
|
[31] |
Song Y, Dhar S, Feldman L, Chung G and Williams J 2004 J. Appl. Phys. 95 4953
|
[32] |
Aktulga H M, Fogarty J C, Pandit S A and Grama A Y 2012 Parallel Comput. 38 245
|
[33] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[34] |
Castro-Marcano F, Kamat A M, Russo Jr M F, van Duin A C T and Mathews J P 2012 Combust. Flame 159 1272
|
[35] |
Rys A, Singh N and Cameron M 1995 J. Electrochem. Soc. 142 1318
|
[36] |
Chen X, Ning L, Wang Y, Li J, Xu X, Hu X and Jiang M 2009 J. Mater. Sci. Technol. 25 115
|
[37] |
Charpentier L, Balat-Pichelin M and Audubert F 2010 J. Eur. Ceram. Soc. 30 2653
|
[38] |
Charpentier L, Balat-Pichelin M, Glénat H, Bêche E, Laborde E and Audubert F 2010 J. Eur. Ceram. Soc. 30 2661
|
[39] |
Kim Y, Min K, Shim J and Kim D J 2012 J. Eur. Ceram. Soc. 32 3611
|
[40] |
Jagodzinski H 1949 Acta Crystallogr. 2 201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|