Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东)1,2,3,†, Xue Zhao(赵雪)1, Hongru Zhao(赵鸿儒)1, Li Yang(杨丽)1, Liyan Lin(林丽艳)1,2, Yue Jiang(姜悦)1, Dan Ma(马丹)1, Yuting Chen(陈雨婷)1, and Xiaohong Yan(颜晓红)1,3,4
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; 2 College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; 3 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China; 4 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract Controlling the spin transport at the single-molecule level, especially without the use of ferromagnetic contacts, becomes a focus of research in spintronics. Inspired by the progress on atomic-level molecular synthesis, through first-principles calculations, we investigate the spin-dependent electronic transport of graphene nanoflakes with side-bonded functional groups, contacted by atomic carbon chain electrodes. It is found that, by rotating the functional group, the spin polarization of the transmission at the Fermi level could be switched between completely polarized and unpolarized states. Moreover, the transition between spin-up and spin-down polarized states can also be achieved, operating as a dual-spin filter. Further analysis shows that, it is the spin-dependent shift of density of states, caused by the rotation, that triggers the shift of transmission peaks, and then results in the variation of spin polarization. Such a feature is found to be robust to the length of the nanoflake and the electrode material, showing great application potential. Those findings may throw light on the development of spintronic devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705097, 11504178, and 11804158), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170895), and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYCX21_0709).
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红) Conformational change-modulated spin transport at single-molecule level in carbon systems 2022 Chin. Phys. B 31 127201
[1] Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Science344 1135 [2] Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M and Novoselov K 2007 Nat. Mater.6 652 [3] Nozaki D, Sevinçli H, Li W, Gutiérrez R and Cuniberti G 2010 Phys. Rev. B81 235406 [4] Joachim C and Gimzewski J 1997 Chem. Phys. Lett.265 353 [5] Selzer Y and Allara D L 2006 Annu. Rev. Phys. Chem.57 593 [6] Tien J, Terfort A and Whitesides G M 1997 Langmuir13 5349 [7] Xu S and Liu G Y 1997 Langmuir13 127 [8] Chen C, Yang S, Su G, Li J, Ren J C and Liu W 2020 J. Phys. Chem. C125 1069 [9] Wang Z Q, Tang F, Dong M M, Wang M L, Hu G C, Leng J C, Wang C K and Zhang G P 2020 Chin. Phys. B29 067202 [10] Dias F S and Machado W S 2021 Mol. Simulat.47 1002 [11] Niu P B, Shi Y L, Sun Z, Nie Y H and Luo H G 2015 Chin. Phys. Lett.32 117201 [12] Min Y, Zhuang G and Yao K 2021 Phys. Lett. A414 127633 [13] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B27 107202 [14] Li Y J, Chen L Y, Xia Y H, Zhao J M, Mu Y Q, Zhang G P and Song Y 2021 Physica E134 114896 [15] Song Y, Wang C K, Chen G and Zhang G P 2021 Phys. Chem. Chem. Phys.23 18760 [16] Antonova I V, Shojaei S, Sattari-Esfahlan S and Kurkina I I 2017 Appl. Phys. Lett.111 043108 [17] Kobashi K, Hayakawa R, Chikyow T and Wakayama Y 2017 Adv. Electron. Mater.3 1700106 [18] Rahighi R, Akhavan O, Zeraati A S and Sattari-Esfahlan S M 2021 ACS Appl. Electron. Mater.3 3418 [19] Hao R, Zhong H, Kang Y, Tian Y, Yan S, Liu G, Han G, Yu S, Mei L and Kang S 2018 Chin. Phys. B27 037202 [20] Yang X, Jun Z, Li C L and Yong G 2019 Acta Phys. Sin.68 187302 (in Chinese) [21] Peng X and Zhang Z 2019 Chin. Phys. B28 127202 [22] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon45 1558 [23] Wang R, Hao Y, Wang Z, Gong H and Thong J T 2010 Nano Lett.10 4844 [24] Baughman R H, Zakhidov A A and De Heer W A 2002 Science297 787 [25] Howard J B, McKinnon J T, Makarovsky Y, Lafleur A L and Johnson M E 1991 Nature352 139 [26] Zhang X W, Zhao H, Sang T, Liu X C and Cai T 2013 Chin. Phys. Lett.30 017201 [27] Chanteau S H and Tour J M 2003 J. Org. Chem.68 8750 [28] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Nature442 904 [29] Larsson S 1981 J. Am. Chem. Soc.103 4034 [30] Woitellier S, Launay J and Joachim C 1989 Chem. Phys.131 481 [31] Guo Y D, Yan X H and Xiao Y 2013 RSC Adv.3 16672 [32] Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S and Hou S 2010 Nanotechnology21 495202 [33] Tierney H L, Murphy C J, Jewell A D, Baber A E, Iski E V, Khodaverdian H Y, McGuire A F, Klebanov N and Sykes E C H 2011 Nat. Nanotech.6 625 [34] Leoni T, Guillermet O, Walch H, Langlais V, Scheuermann A, Bonvoisin J and Gauthier S 2011 Phys. Rev. Lett.106 216103 [35] Chowdhury R, Adhikari S, Rees P, Wilks S and Scarpa F 2011 Phys. Rev. B83 045401 [36] Taylor J, Guo H and Wang J 2001 Phys. Rev. B63 245407 [37] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B65 165401 [38] Datta S 2000 Superlattice. Microstruct.28 253 [39] Cohen A J, Mori-Sánchez P and Yang W 2008 Science321 792 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [41] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B46 6671 [42] Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett.91 146401 [43] Van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun.226 39 [44] Şahin H and Senger R T 2008 Phys. Rev. B78 205423 [45] Senge M O, Renner M W, Kallisch W W and Fajer J 2000 J. Chem. Soc. Dalton Trans. 381 [46] Guo Y, Yan X and Xiao Y 2010 J. Appl. Phys.108 104309 [47] Kuc A, Heine T and Seifert G 2010 Phys. Rev. B81 085430 [48] Ricca A, Bauschlicher C W, Boersma C, Tielens A G and Allamandola L J 2012 The Astrophysical Journal754 75 [49] Wohner N, Lam P and Sattler K 2014 Carbon67 721 [50] Silva A, Pires M, Freire V, Albuquerque E, Azevedo D and Caetano E 2010 J. Phys. Chem. C114 17472 [51] Barnard A S and Snook I K 2008 J. Chem. Phys.128 094707 [52] Ci L, Song L, Jariwala D, Elias A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater.21 4487 [53] Xiang Z, Dai Q, Chen J F and Dai L 2016 Adv. Mater.28 6253 [54] Shao J, Zhu W, Zhang X and Zheng Y 2020 NPJ Comput. Mater.6 1 [55] Bellunato A, Arjmandi Tash H, Cesa Y and Schneider G F 2016 Chem. Phys. Chem.17 785 [56] Sun Z, Kohama S i, Zhang Z, Lomeda J R and Tour J M 2010 Nano Res.3 117 [57] Dai L 2013 Acc. Chem. Res.46 31
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.