Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127201    DOI: 10.1088/1674-1056/ac872d
Special Issue: SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
SPECIAL TOPIC—The third carbon: Carbyne with one-dimensional sp-carbon Prev   Next  

Conformational change-modulated spin transport at single-molecule level in carbon systems

Yandong Guo(郭艳东)1,2,3,†, Xue Zhao(赵雪)1, Hongru Zhao(赵鸿儒)1, Li Yang(杨丽)1, Liyan Lin(林丽艳)1,2, Yue Jiang(姜悦)1, Dan Ma(马丹)1, Yuting Chen(陈雨婷)1, and Xiaohong Yan(颜晓红)1,3,4
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
2 College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
3 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China;
4 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  Controlling the spin transport at the single-molecule level, especially without the use of ferromagnetic contacts, becomes a focus of research in spintronics. Inspired by the progress on atomic-level molecular synthesis, through first-principles calculations, we investigate the spin-dependent electronic transport of graphene nanoflakes with side-bonded functional groups, contacted by atomic carbon chain electrodes. It is found that, by rotating the functional group, the spin polarization of the transmission at the Fermi level could be switched between completely polarized and unpolarized states. Moreover, the transition between spin-up and spin-down polarized states can also be achieved, operating as a dual-spin filter. Further analysis shows that, it is the spin-dependent shift of density of states, caused by the rotation, that triggers the shift of transmission peaks, and then results in the variation of spin polarization. Such a feature is found to be robust to the length of the nanoflake and the electrode material, showing great application potential. Those findings may throw light on the development of spintronic devices.
Keywords:  spin-dependent electronic transport      molecular device      dual-spin filter      density-functional theory  
Received:  14 May 2022      Revised:  03 August 2022      Accepted manuscript online:  05 August 2022
PACS:  72.25.-b (Spin polarized transport)  
  78.65.+h  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.23.Ad (Ballistic transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705097, 11504178, and 11804158), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170895), and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYCX21_0709).
Corresponding Authors:  Yandong Guo     E-mail:  yandongguo@njupt.edu.cn

Cite this article: 

Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红) Conformational change-modulated spin transport at single-molecule level in carbon systems 2022 Chin. Phys. B 31 127201

[1] Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Science 344 1135
[2] Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M and Novoselov K 2007 Nat. Mater. 6 652
[3] Nozaki D, Sevinçli H, Li W, Gutiérrez R and Cuniberti G 2010 Phys. Rev. B 81 235406
[4] Joachim C and Gimzewski J 1997 Chem. Phys. Lett. 265 353
[5] Selzer Y and Allara D L 2006 Annu. Rev. Phys. Chem. 57 593
[6] Tien J, Terfort A and Whitesides G M 1997 Langmuir 13 5349
[7] Xu S and Liu G Y 1997 Langmuir 13 127
[8] Chen C, Yang S, Su G, Li J, Ren J C and Liu W 2020 J. Phys. Chem. C 125 1069
[9] Wang Z Q, Tang F, Dong M M, Wang M L, Hu G C, Leng J C, Wang C K and Zhang G P 2020 Chin. Phys. B 29 067202
[10] Dias F S and Machado W S 2021 Mol. Simulat. 47 1002
[11] Niu P B, Shi Y L, Sun Z, Nie Y H and Luo H G 2015 Chin. Phys. Lett. 32 117201
[12] Min Y, Zhuang G and Yao K 2021 Phys. Lett. A 414 127633
[13] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202
[14] Li Y J, Chen L Y, Xia Y H, Zhao J M, Mu Y Q, Zhang G P and Song Y 2021 Physica E 134 114896
[15] Song Y, Wang C K, Chen G and Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760
[16] Antonova I V, Shojaei S, Sattari-Esfahlan S and Kurkina I I 2017 Appl. Phys. Lett. 111 043108
[17] Kobashi K, Hayakawa R, Chikyow T and Wakayama Y 2017 Adv. Electron. Mater. 3 1700106
[18] Rahighi R, Akhavan O, Zeraati A S and Sattari-Esfahlan S M 2021 ACS Appl. Electron. Mater. 3 3418
[19] Hao R, Zhong H, Kang Y, Tian Y, Yan S, Liu G, Han G, Yu S, Mei L and Kang S 2018 Chin. Phys. B 27 037202
[20] Yang X, Jun Z, Li C L and Yong G 2019 Acta Phys. Sin. 68 187302 (in Chinese)
[21] Peng X and Zhang Z 2019 Chin. Phys. B 28 127202
[22] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[23] Wang R, Hao Y, Wang Z, Gong H and Thong J T 2010 Nano Lett. 10 4844
[24] Baughman R H, Zakhidov A A and De Heer W A 2002 Science 297 787
[25] Howard J B, McKinnon J T, Makarovsky Y, Lafleur A L and Johnson M E 1991 Nature 352 139
[26] Zhang X W, Zhao H, Sang T, Liu X C and Cai T 2013 Chin. Phys. Lett. 30 017201
[27] Chanteau S H and Tour J M 2003 J. Org. Chem. 68 8750
[28] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Nature 442 904
[29] Larsson S 1981 J. Am. Chem. Soc. 103 4034
[30] Woitellier S, Launay J and Joachim C 1989 Chem. Phys. 131 481
[31] Guo Y D, Yan X H and Xiao Y 2013 RSC Adv. 3 16672
[32] Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S and Hou S 2010 Nanotechnology 21 495202
[33] Tierney H L, Murphy C J, Jewell A D, Baber A E, Iski E V, Khodaverdian H Y, McGuire A F, Klebanov N and Sykes E C H 2011 Nat. Nanotech. 6 625
[34] Leoni T, Guillermet O, Walch H, Langlais V, Scheuermann A, Bonvoisin J and Gauthier S 2011 Phys. Rev. Lett. 106 216103
[35] Chowdhury R, Adhikari S, Rees P, Wilks S and Scarpa F 2011 Phys. Rev. B 83 045401
[36] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[37] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[38] Datta S 2000 Superlattice. Microstruct. 28 253
[39] Cohen A J, Mori-Sánchez P and Yang W 2008 Science 321 792
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[42] Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[43] Van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39
[44] Şahin H and Senger R T 2008 Phys. Rev. B 78 205423
[45] Senge M O, Renner M W, Kallisch W W and Fajer J 2000 J. Chem. Soc. Dalton Trans. 381
[46] Guo Y, Yan X and Xiao Y 2010 J. Appl. Phys. 108 104309
[47] Kuc A, Heine T and Seifert G 2010 Phys. Rev. B 81 085430
[48] Ricca A, Bauschlicher C W, Boersma C, Tielens A G and Allamandola L J 2012 The Astrophysical Journal 754 75
[49] Wohner N, Lam P and Sattler K 2014 Carbon 67 721
[50] Silva A, Pires M, Freire V, Albuquerque E, Azevedo D and Caetano E 2010 J. Phys. Chem. C 114 17472
[51] Barnard A S and Snook I K 2008 J. Chem. Phys. 128 094707
[52] Ci L, Song L, Jariwala D, Elias A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater. 21 4487
[53] Xiang Z, Dai Q, Chen J F and Dai L 2016 Adv. Mater. 28 6253
[54] Shao J, Zhu W, Zhang X and Zheng Y 2020 NPJ Comput. Mater. 6 1
[55] Bellunato A, Arjmandi Tash H, Cesa Y and Schneider G F 2016 Chem. Phys. Chem. 17 785
[56] Sun Z, Kohama S i, Zhang Z, Lomeda J R and Tour J M 2010 Nano Res. 3 117
[57] Dai L 2013 Acc. Chem. Res. 46 31
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[5] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[6] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[7] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[8] Gas-sensor property of single-molecule device: F2 adsorbing effect
Zong-Liang Li(李宗良), Jun-Jie Bi(毕俊杰), Ran Liu(刘然), Xiao-Hua Yi(衣晓华), Huan-Yan Fu(傅焕俨), Feng Sun(孙峰), Ming-Zhi Wei(魏明志), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(9): 098508.
[9] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[10] Vacancy effect on the doping of silicon nanowires:A first-principles study
Liu Yang (刘阳), Liang Pei (梁培), Shu Hai-Bo (舒海波), Cao Dan (曹丹), Dong Qian-Min (董前民), Wang Le (王乐). Chin. Phys. B, 2014, 23(6): 067304.
[11] Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations
Liu Qi-Jun (刘其军), Zhang Ning-Chao (张宁超), Liu Fu-Sheng (刘福生), Liu Zheng-Tang (刘正堂). Chin. Phys. B, 2014, 23(4): 047101.
[12] Density-functional theory study of the effect of pressure on the elastic properties of CaB6
Han Han (韩晗). Chin. Phys. B, 2013, 22(7): 077101.
[13] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia (牛纹霞), Zhang Hong (张红), Gong Min (龚敏), Cheng Xin-Lu (程新路). Chin. Phys. B, 2013, 22(6): 066802.
[14] Density-functional theory investigation of electronic structure, elastic properties, optical properties, and lattice dynamics of Ba2ZnWO6
Guo San-Dong (郭三栋). Chin. Phys. B, 2013, 22(6): 067102.
[15] Structural, magnetic, electronic, and elastic properties of face-centered cubic PuHx (x = 2, 3):GGA (LSDA) + U + SO
Guo Yong (郭咏), Ai Juan-Juan (艾娟娟), Gao Tao (高涛), Ao Bing-Yun (敖冰云). Chin. Phys. B, 2013, 22(5): 057103.
No Suggested Reading articles found!