Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128106    DOI: 10.1088/1674-1056/ac7552
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor

Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林)
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China
Abstract  Unintentional nitrogen incorporation has been observed in a set of microwave plasma chemical vapor deposition (MPCVD)-grown samples. No abnormality has been detected on the apparatus especially the base pressure and feeding gas purity. By a comprehensive investigation including the analysis of the plasma composition, we found that a minor leakage of the system could be significantly magnified by the thermal effect, resulting in a considerable residual nitrogen in the diamond material. Moreover, the doping mechanism of leaked air is different to pure nitrogen doping. The dosage of several ppm of pure nitrogen can lead to efficient nitrogen incorporation in diamond, while at least thousands ppm of leaked air is required for detecting obvious residual nitrogen. The difference of the dosage has been ascribed to the suppression effect of oxygen that consumes nitrogen. As the unintentional impurity is basically detrimental to the controllable fabrication of diamond for electronic application, we have provided an effective way to suppress the residual nitrogen in a slightly leaked system by modifying the susceptor geometry. This study indicates that even if a normal base pressure can be reached, the nitrogen residing in the chamber can be "activated" by the thermal effect and thus be incorporated in diamond material grown by a MPCVD reactor.
Keywords:  microwave plasma chemical vapor deposition      diamond      residual nitrogen      system leakage  
Received:  16 December 2021      Revised:  21 May 2022      Accepted manuscript online:  02 June 2022
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.ug (Diamond)  
  07.30.Bx (Degasification, residual gas)  
  07.30.Kf (Vacuum chambers, auxiliary apparatus, and materials)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160065), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Kun Tang, Shu-Lin Gu     E-mail:  ktang@nju.edu.cn;slgu@nju.edu.cn

Cite this article: 

Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor 2022 Chin. Phys. B 31 128106

[1] Baranauskas V, Li B B, Peterlevitz A, Tosin M C and Durrant S F 1999 J. Appl. Phys. 85 7455
[2] Charles S J, Butler J E, Feygelson B N, Newton M E, Carroll D L, Steeds J W, Darwish H, Yan C S, Mao H K and Hemley R J 2004 Phys. Status Solidi A 201 2473
[3] Holmes J, Dutta M and Koeck F A 2008 Nucl. Instrum. Meth. A 903 297
[4] Chayahara A, Mokuno Y, Horino Y, Takasu Y, Kato H, Yoshikawa H and Fujimori N 2004 Diam. Relat. Mater. 13 1954
[5] Lesik M, Plays T, Tallaire A, Achard J, Brinza O, William L, Chipaux M, Toraille L, Debuisschert T, Gicquel A, Roch J F and Jacques V 2015 Diam. Relat. Mater. 56 47
[6] Iakoubovskii K, Adriaenssens G J and Vohra Y K 2001 Diam. Relat. Mater. 10 485
[7] Yan C S and Vohra Y K 1999 Diam. Relat. Mater. 8 2022
[8] Vikharev A L, Lobaev M A, Gorbachev A M, Radishev D B, Isaev V A and Bogdanov S A 2020 Mater. Today Commun. 22 100816
[9] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745
[10] Bolshakov A P, Ralchenko V G, Shu G Y, Dai B, Yurov V Y, Bushuev E V, Khomich, A A, Altakhov A S, Ashkinazi E E, Antonova I A, Vlasov A V, Voronov V V, Sizov Y Y, Vartapetov S K, Konov V I and Zhu J 2020 Mater. Today Commun. 25 101635
[11] Tallaire A, Lesik M, Jacques V, Pezzagna S, Mille V, Brinza O, Meijer J, Abel B, Roch J F, Gicquel A and Achard J 2015 Diam. Relat. Mater. 51 55
[12] Rabeau J R, Chin Y L and Prawer S 2005 Appl. Phys. Lett. 86 131926
[13] Achard J, Silva F, Brinza O, Tallaire A and Gicquel A. 2007 Diam. Relat. Mater. 16 685
[14] Nistor S V and Stefan M 2000 J. Appl. Phys. 87 8741
[15] Matsumoto T, Mukose T, Makino T, Takeuchi D, Yamasaki S, Inokuma T and Tokud N 2017 Diam. Relat. Mater. 75 152
[16] Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M and Cruddace R J 2006 Diam. Relat. Mater. 15 1700
[17] Yan C S, Vohra Y K, Mao H K and Hemley R J 2002 Proc. Natl. Acad. Sci. USA 99 12523
[18] Liu D Y, Hao L C, Teng Y, Qin F, Shen Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y L and Gu S L 2021 APL Mater. 9 081106
[19] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y L and Gu S L 2020 Appl. Phys. Lett. 117 022101
[20] Hwang D S, Saito T and Fujimori N 2004 Diam. Relat. Mater. 13 2207
[21] Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R and Hao Y 2019 Chin. Phys. B 28 128103
[22] Liu Y, Ding M, Su J, Li Y, Zhang P, Lu X and Tang W 2017 Diam. Relat. Mater. 76 68
[23] Tallaire A, Mayer L, Brinza O, Pinault-Thaury M A, Debuisschert T and Achard J 2017 Appl. Phys. Lett. 111 143101
[24] Su Y, Li H D, Cheng S H, Zhang Q, Wang Q L, Lv X Y, Zou G T, Pei X Q and Xie J G 2012 J. Cryst. Growth 351 51
[25] Yamada H, Chayahara A and Mokuno Y 2016 Jpn. J. Appl. Phys. 55 01AC07
[26] Yiming Z, Larsson F and Larsson K 2014 Theor. Chem. Acc 133 1432
[27] Hirakuri K K, Kobayashi T, Nakamura E, Mutsukura N, Friedbacher G and Machi Y 2001 Vacuum 63 449
[28] Tallaire A, Brinza O, Huillery P, Delord T, Pellet-Mary C, Staacke R, Abel B, Pezzagna S, Meijer J, Touati N, Binet L, Ferrier A, Philippe G, Hetet G and Achard J 2020 Carbon 170 421
[29] Su J, Li Y, Liu Y, Ding M and Tang W 2017 Diam. Relat. Mater. 73 99
[30] Klopfer A, Garbe S and Schmidt W 1960 Vacuum 10 7
[31] Teraji T, Isoya J, Watanabe K, Koizumi S and Koide Y 2017 Mat. Sci. Semicon. Proc. 70 197
[32] Kelly M W, Halliwell S C, Rodgers W J, Pattle J D, Harvey J N and Ashfold M N R 2017 J. Phys. Chem. A 121 2046
[33] Ashkinazi E E, Khmelnitskii R A, Sedov V S, Khomich A A, Khomich A V and Ralchenko V G 2017 Crystals 7 166
[34] Truscott B S, Kelly M W, Potter K J, Ashfold M N R and Mankelevich Y A 2016 J. Phys. Chem. A 120 8537
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[10] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[11] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[12] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[13] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[14] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[15] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
No Suggested Reading articles found!