INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor |
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨)†, Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林)‡ |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China |
|
|
Abstract Unintentional nitrogen incorporation has been observed in a set of microwave plasma chemical vapor deposition (MPCVD)-grown samples. No abnormality has been detected on the apparatus especially the base pressure and feeding gas purity. By a comprehensive investigation including the analysis of the plasma composition, we found that a minor leakage of the system could be significantly magnified by the thermal effect, resulting in a considerable residual nitrogen in the diamond material. Moreover, the doping mechanism of leaked air is different to pure nitrogen doping. The dosage of several ppm of pure nitrogen can lead to efficient nitrogen incorporation in diamond, while at least thousands ppm of leaked air is required for detecting obvious residual nitrogen. The difference of the dosage has been ascribed to the suppression effect of oxygen that consumes nitrogen. As the unintentional impurity is basically detrimental to the controllable fabrication of diamond for electronic application, we have provided an effective way to suppress the residual nitrogen in a slightly leaked system by modifying the susceptor geometry. This study indicates that even if a normal base pressure can be reached, the nitrogen residing in the chamber can be "activated" by the thermal effect and thus be incorporated in diamond material grown by a MPCVD reactor.
|
Received: 16 December 2021
Revised: 21 May 2022
Accepted manuscript online: 02 June 2022
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.ug
|
(Diamond)
|
|
07.30.Bx
|
(Degasification, residual gas)
|
|
07.30.Kf
|
(Vacuum chambers, auxiliary apparatus, and materials)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160065), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Kun Tang, Shu-Lin Gu
E-mail: ktang@nju.edu.cn;slgu@nju.edu.cn
|
Cite this article:
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor 2022 Chin. Phys. B 31 128106
|
[1] Baranauskas V, Li B B, Peterlevitz A, Tosin M C and Durrant S F 1999 J. Appl. Phys. 85 7455 [2] Charles S J, Butler J E, Feygelson B N, Newton M E, Carroll D L, Steeds J W, Darwish H, Yan C S, Mao H K and Hemley R J 2004 Phys. Status Solidi A 201 2473 [3] Holmes J, Dutta M and Koeck F A 2008 Nucl. Instrum. Meth. A 903 297 [4] Chayahara A, Mokuno Y, Horino Y, Takasu Y, Kato H, Yoshikawa H and Fujimori N 2004 Diam. Relat. Mater. 13 1954 [5] Lesik M, Plays T, Tallaire A, Achard J, Brinza O, William L, Chipaux M, Toraille L, Debuisschert T, Gicquel A, Roch J F and Jacques V 2015 Diam. Relat. Mater. 56 47 [6] Iakoubovskii K, Adriaenssens G J and Vohra Y K 2001 Diam. Relat. Mater. 10 485 [7] Yan C S and Vohra Y K 1999 Diam. Relat. Mater. 8 2022 [8] Vikharev A L, Lobaev M A, Gorbachev A M, Radishev D B, Isaev V A and Bogdanov S A 2020 Mater. Today Commun. 22 100816 [9] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745 [10] Bolshakov A P, Ralchenko V G, Shu G Y, Dai B, Yurov V Y, Bushuev E V, Khomich, A A, Altakhov A S, Ashkinazi E E, Antonova I A, Vlasov A V, Voronov V V, Sizov Y Y, Vartapetov S K, Konov V I and Zhu J 2020 Mater. Today Commun. 25 101635 [11] Tallaire A, Lesik M, Jacques V, Pezzagna S, Mille V, Brinza O, Meijer J, Abel B, Roch J F, Gicquel A and Achard J 2015 Diam. Relat. Mater. 51 55 [12] Rabeau J R, Chin Y L and Prawer S 2005 Appl. Phys. Lett. 86 131926 [13] Achard J, Silva F, Brinza O, Tallaire A and Gicquel A. 2007 Diam. Relat. Mater. 16 685 [14] Nistor S V and Stefan M 2000 J. Appl. Phys. 87 8741 [15] Matsumoto T, Mukose T, Makino T, Takeuchi D, Yamasaki S, Inokuma T and Tokud N 2017 Diam. Relat. Mater. 75 152 [16] Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M and Cruddace R J 2006 Diam. Relat. Mater. 15 1700 [17] Yan C S, Vohra Y K, Mao H K and Hemley R J 2002 Proc. Natl. Acad. Sci. USA 99 12523 [18] Liu D Y, Hao L C, Teng Y, Qin F, Shen Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y L and Gu S L 2021 APL Mater. 9 081106 [19] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y L and Gu S L 2020 Appl. Phys. Lett. 117 022101 [20] Hwang D S, Saito T and Fujimori N 2004 Diam. Relat. Mater. 13 2207 [21] Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R and Hao Y 2019 Chin. Phys. B 28 128103 [22] Liu Y, Ding M, Su J, Li Y, Zhang P, Lu X and Tang W 2017 Diam. Relat. Mater. 76 68 [23] Tallaire A, Mayer L, Brinza O, Pinault-Thaury M A, Debuisschert T and Achard J 2017 Appl. Phys. Lett. 111 143101 [24] Su Y, Li H D, Cheng S H, Zhang Q, Wang Q L, Lv X Y, Zou G T, Pei X Q and Xie J G 2012 J. Cryst. Growth 351 51 [25] Yamada H, Chayahara A and Mokuno Y 2016 Jpn. J. Appl. Phys. 55 01AC07 [26] Yiming Z, Larsson F and Larsson K 2014 Theor. Chem. Acc 133 1432 [27] Hirakuri K K, Kobayashi T, Nakamura E, Mutsukura N, Friedbacher G and Machi Y 2001 Vacuum 63 449 [28] Tallaire A, Brinza O, Huillery P, Delord T, Pellet-Mary C, Staacke R, Abel B, Pezzagna S, Meijer J, Touati N, Binet L, Ferrier A, Philippe G, Hetet G and Achard J 2020 Carbon 170 421 [29] Su J, Li Y, Liu Y, Ding M and Tang W 2017 Diam. Relat. Mater. 73 99 [30] Klopfer A, Garbe S and Schmidt W 1960 Vacuum 10 7 [31] Teraji T, Isoya J, Watanabe K, Koizumi S and Koide Y 2017 Mat. Sci. Semicon. Proc. 70 197 [32] Kelly M W, Halliwell S C, Rodgers W J, Pattle J D, Harvey J N and Ashfold M N R 2017 J. Phys. Chem. A 121 2046 [33] Ashkinazi E E, Khmelnitskii R A, Sedov V S, Khomich A A, Khomich A V and Ralchenko V G 2017 Crystals 7 166 [34] Truscott B S, Kelly M W, Potter K J, Ashfold M N R and Mankelevich Y A 2016 J. Phys. Chem. A 120 8537 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|