Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128107    DOI: 10.1088/1674-1056/ac9e97
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bottom-up design and assembly with superatomic building blocks

Famin Yu(于法民)1, Zhonghua Liu(刘中华)1, Jiarui Li(李佳芮)1, Wanrong Huang(黄婉蓉)1, Xinrui Yang(杨欣瑞)1, and Zhigang Wang(王志刚)1,2,3,†
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
Abstract  Constructing specific structures from the bottom up with artificial units is an important interdisciplinary topic involving physics, chemistry, materials, and so on. In this work, we theoretically demonstrated the feasibility of using superatoms as building blocks to assemble a complex at atomic-level precision. By using a series of actinide-based endohedral metallofullerene (EMF) superatoms that can form one, two, three and four chemical bonds, a planar complex with intra- and inter-molecular interactions was assembled on the Au(111) surface. This complex is composed of two parts, containing ten and eight superatoms, respectively. The electronic structure analysis shows that the electron density inside each part is connected and the closed-shell electronic arrangement system is designed. There is also an obvious van der Waals boundary by physical adsorption between the two parts, and a stable complex is formed. Since this complex is realized by the first-principles calculations of quantum mechanics, our results help not only achieve atomic-level precision construction with artificial superatomic units but also maintain atomic-level functional properties.
Keywords:  superatom      bottom-up      assembly      atomic level  
Received:  01 September 2022      Revised:  15 October 2022      Accepted manuscript online:  31 October 2022
PACS:  81.16.Dn (Self-assembly)  
  87.16.dr (Assembly and interactions)  
  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  36.40.-c (Atomic and molecular clusters)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11974136, 11674123, and 11374004). Z. W. also acknowledges the High-Performance Computing Center of Jilin University and National Supercomputing Center in Shanghai.
Corresponding Authors:  Zhigang Wang     E-mail:  wangzg@jlu.edu.cn,wangzg1978@hotmail.com

Cite this article: 

Famin Yu(于法民), Zhonghua Liu(刘中华), Jiarui Li(李佳芮), Wanrong Huang(黄婉蓉), Xinrui Yang(杨欣瑞), and Zhigang Wang(王志刚) Bottom-up design and assembly with superatomic building blocks 2022 Chin. Phys. B 31 128107

[1] Santos P J, Gabrys P A, Zornberg L Z, Lee M S and Macfarlane R J 2021 Nature 591 586
[2] Zeng C, Chen Y, Kirschbaum K, Lambright Kelly J and Jin R 2016 Science 354 1580
[3] Doud E A, Voevodin A, Hochuli T J, Champsaur A M, Nuckolls C and Roy X 2020 Nat. Rev. Mater. 5 371
[4] Yang J, Russell J C, Tao S, Lessio M, Wang F, Hartnett A C, Peurifoy S R, Doud E A, O'Brien E S, Gadjieva N, Reichman D R, Zhu X, Crowther A C, Billinge S J L, Roy X, Steigerwald M L and Nuckolls C 2021 Nat. Chem. 13 607
[5] Stupp S I and Palmer L C 2014 Chem. Mater. 26 507
[6] Liu X Q, Kong H H, Chen X, Du X L, Chen F, Liu N H and Wang L 2010 Chin. Phys. Lett. 27 056804
[7] Jin Y, Zhang C, Dong X Y, Zang S Q and Mak T C W 2021 Chem. Soc. Rev. 50 2297
[8] Li Y, Zhou M, Song Y, Higaki T, Wang H and Jin R 2021 Nature 594 380
[9] Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Hakkinen H and Zheng N 2013 Nat. Commun. 4 2422
[10] Zheng X Y, Xie J, Kong X J, Long L S and Zheng L S 2019 Coord. Chem. Rev. 378 222
[11] Furukawa H, Cordova K E, O'Keeffe M and Yaghi O M 2013 Science 341 974
[12] Gao C, Yuan J J, Cao J J, Yang H N and Shan Y G 2019 Acta. Phys. Sin. 68 140205 (in Chinese)
[13] Cloutier S G, Hsu C H, Kossyrev P A and Xu J 2006 Adv. Mater. 18 841
[14] Huang Z, Geyer N, Werner P, de Boor J and Gösele U 2011 Adv. Mater. 23 285
[15] Dong R H, Zhang T and Feng X L 2018 Chem. Rev. 118 6189
[16] Feynman R P 1960 Caltech Eng. Sci. 23 22
[17] Jena P 2013 J. Phys. Chem. Lett. 4 1432
[18] Li M, Bhiladvala R B, Morrow T J, Sioss J A, Lew K K, Redwing J M, Keating C D and Mayer T S 2008 Nat. Nanotechnol. 3 88
[19] Li M, Ishihara S, Ji Q M, Akada M, Hill J P and Ariga K 2012 Sci. Technol. Adv. Mater. 13 053001
[20] Wang Z G 2020 Chin. Sci. Bull. 65 2196
[21] Badr H O, El-Melegy T, Carey M, et al. 2022 Mater. Today 54 8
[22] Inoshita T, Ohnishi S and Oshiyama A 1986 Phys. Rev. Lett. 57 2560
[23] Khanna S N and Jena P 1992 Phys. Rev. Lett. 69 1664
[24] Gao Y and Wang Z G 2016 Chin. Phys. B 25 083102
[25] Luo Z and Castleman A W 2014 Acc. Chem. Res. 47 2931
[26] Yu F, Li J, Liu Z, Wang R, Zhu Y, Huang W, Liu Z and Wang Z 2022 J. Cluster Sci.
[27] Yan L J, Shao J M and Li Y Q 2020 Chin. Phys. B 29 125101
[28] Jin R X, Liu C, Zhao S, Das A, Xing H Z, Gayathri C, Xing Y, Rosi N L, Gil R R and Jin R C 2015 ACS Nano. 9 8530
[29] Bartholomew A K, Meirzadeh E, Stone I B, Koay C S, Nuckolls C, Steigerwald M L, Crowther A C and Roy X 2022 J. Am. Ceram. Soc. 144 1119
[30] Reed D A, Hochuli T J, Gadjieva N A, He S, Wiscons R A, Bartholomew A K, Champsaur A M, Steigerwald M L, Roy X and Nuckolls C 2022 J. Am. Ceram. Soc. 144 306
[31] Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E and Smalley R E 1992 Science 257 1661
[32] Zhao K and Pitzer R M 1996 J. Phys. Chem. 100 4798
[33] Dognon J P, Clavaguera C and Pyykko P 2009 J. Am. Chem. Soc. 131 238
[34] Ryzhkov M V, Ivanovskii A L and Delley B 2012 Comput. Theor. Chem. 985 46
[35] Dai X, Gao Y, Jiang W R, Lei Y Y and Wang Z G 2015 Phys. Chem. Chem. Phys. 17 23308
[36] Xie W Y, Zhu Y, Wang J P, Cheng A H and Wang Z G 2019 Chin. Phys. Lett. 36 116401
[37] Hou L, Cui X, Guan B, Wang S, Li R, Liu Y, Zhu D and Zheng J 2022 Nature 606 507
[38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Binkley J S, Pople J A and Hehre W J 1980 J. Am. Ceram. Soc. 102 939
[41] Andrae D, Häußermann U, Dolg M, Stoll H and Preuß H 1990 Theor. Chim. Acta 77 123
[42] Shin H, Schwarze A, Diehl R D, Pussi K, Colombier A, Gaudry É, Ledieu J, McGuirk G M, Serkovic Loli L N, Fournée V, Wang L L, Schull G and Berndt R 2014 Phys. Rev. B 89 245428
[43] Lu X, Grobis M, Khoo K H, Louie S G and Crommie M F 2004 Phys. Rev. B 70 115418
[44] Tzeng C T, Lo W S, Yuh J Y, Chu R Y and Tsuei K D 2000 Phys. Rev. B 61 2263
[45] Honig B and Karplus M 1971 Nature 229 558
[46] Maseras F and Morokuma K 1995 J. Comput. Chem. 16 1170
[47] Chung L W, Sameera W M C, Ramozzi R, Page A J, Hatanaka M, Petrova G P, Harris T V, Li X, Ke Z, Liu F, Li H B, Ding L and Morokuma K 2015 Chem. Rev. 115 5678
[48] Rappé A K, Casewit C, Colwell K S, Goddard W A and Skiff W M 1992 J. Am. Ceram. Soc. 114 10024
[49] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian, Inc., Wallingford CT
[50] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[51] Ohno K, Maruyama Y, Esfarjani K, Kawazoe Y, Sato N, Hatakeyama R, Hirata T and Niwano M 1996 Phys. Rev. Lett. 76 3590
[52] Dunk P W, Kaiser N K, Mulet-Gas M, Rodríguez-Fortea A, Poblet J M, Shinohara H, Hendrickson C L, Marshall A G and Kroto H W 2012 J. Am. Ceram. Soc. 134 9380
[53] Ma G H, Shen X, Sun L L, Zhang R X, Wei P, Sanvito S and Hou S M 2010 Nanotechnology 21 495202
[54] Xie W Y, Yu F M, Wu X C, Liu Z, Yan Q and Wang Z G 2021 Phys. Chem. Chem. Phys. 23 15899
[55] Yu F M, Zhu Y, Gao Y, Wang R, Huang W R, Gao Y and Wang Z G 2022 Nano Res. 15 8665
[56] Lu T and Chen Q 2022 J. Comput. Chem. 43 539
[1] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[5] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[6] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[7] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[8] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[9] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[10] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[11] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[12] Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model
Yang Gao(高阳), Zhigang Wang(王志刚). Chin. Phys. B, 2016, 25(8): 083102.
[13] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[14] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[15] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
No Suggested Reading articles found!