1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 College of Physics, Jilin University, Changchun 130012, China; 3 Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
Abstract Constructing specific structures from the bottom up with artificial units is an important interdisciplinary topic involving physics, chemistry, materials, and so on. In this work, we theoretically demonstrated the feasibility of using superatoms as building blocks to assemble a complex at atomic-level precision. By using a series of actinide-based endohedral metallofullerene (EMF) superatoms that can form one, two, three and four chemical bonds, a planar complex with intra- and inter-molecular interactions was assembled on the Au(111) surface. This complex is composed of two parts, containing ten and eight superatoms, respectively. The electronic structure analysis shows that the electron density inside each part is connected and the closed-shell electronic arrangement system is designed. There is also an obvious van der Waals boundary by physical adsorption between the two parts, and a stable complex is formed. Since this complex is realized by the first-principles calculations of quantum mechanics, our results help not only achieve atomic-level precision construction with artificial superatomic units but also maintain atomic-level functional properties.
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11974136, 11674123, and 11374004). Z. W. also acknowledges the High-Performance Computing Center of Jilin University and National Supercomputing Center in Shanghai.
Corresponding Authors:
Zhigang Wang
E-mail: wangzg@jlu.edu.cn,wangzg1978@hotmail.com
Cite this article:
Famin Yu(于法民), Zhonghua Liu(刘中华), Jiarui Li(李佳芮), Wanrong Huang(黄婉蓉), Xinrui Yang(杨欣瑞), and Zhigang Wang(王志刚) Bottom-up design and assembly with superatomic building blocks 2022 Chin. Phys. B 31 128107
[1] Santos P J, Gabrys P A, Zornberg L Z, Lee M S and Macfarlane R J 2021 Nature591 586 [2] Zeng C, Chen Y, Kirschbaum K, Lambright Kelly J and Jin R 2016 Science354 1580 [3] Doud E A, Voevodin A, Hochuli T J, Champsaur A M, Nuckolls C and Roy X 2020 Nat. Rev. Mater.5 371 [4] Yang J, Russell J C, Tao S, Lessio M, Wang F, Hartnett A C, Peurifoy S R, Doud E A, O'Brien E S, Gadjieva N, Reichman D R, Zhu X, Crowther A C, Billinge S J L, Roy X, Steigerwald M L and Nuckolls C 2021 Nat. Chem.13 607 [5] Stupp S I and Palmer L C 2014 Chem. Mater.26 507 [6] Liu X Q, Kong H H, Chen X, Du X L, Chen F, Liu N H and Wang L 2010 Chin. Phys. Lett.27 056804 [7] Jin Y, Zhang C, Dong X Y, Zang S Q and Mak T C W 2021 Chem. Soc. Rev.50 2297 [8] Li Y, Zhou M, Song Y, Higaki T, Wang H and Jin R 2021 Nature594 380 [9] Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Hakkinen H and Zheng N 2013 Nat. Commun.4 2422 [10] Zheng X Y, Xie J, Kong X J, Long L S and Zheng L S 2019 Coord. Chem. Rev.378 222 [11] Furukawa H, Cordova K E, O'Keeffe M and Yaghi O M 2013 Science341 974 [12] Gao C, Yuan J J, Cao J J, Yang H N and Shan Y G 2019 Acta. Phys. Sin.68 140205 (in Chinese) [13] Cloutier S G, Hsu C H, Kossyrev P A and Xu J 2006 Adv. Mater.18 841 [14] Huang Z, Geyer N, Werner P, de Boor J and Gösele U 2011 Adv. Mater.23 285 [15] Dong R H, Zhang T and Feng X L 2018 Chem. Rev.118 6189 [16] Feynman R P 1960 Caltech Eng. Sci.23 22 [17] Jena P 2013 J. Phys. Chem. Lett.4 1432 [18] Li M, Bhiladvala R B, Morrow T J, Sioss J A, Lew K K, Redwing J M, Keating C D and Mayer T S 2008 Nat. Nanotechnol.3 88 [19] Li M, Ishihara S, Ji Q M, Akada M, Hill J P and Ariga K 2012 Sci. Technol. Adv. Mater.13 053001 [20] Wang Z G 2020 Chin. Sci. Bull.65 2196 [21] Badr H O, El-Melegy T, Carey M, et al. 2022 Mater. Today54 8 [22] Inoshita T, Ohnishi S and Oshiyama A 1986 Phys. Rev. Lett.57 2560 [23] Khanna S N and Jena P 1992 Phys. Rev. Lett.69 1664 [24] Gao Y and Wang Z G 2016 Chin. Phys. B25 083102 [25] Luo Z and Castleman A W 2014 Acc. Chem. Res.47 2931 [26] Yu F, Li J, Liu Z, Wang R, Zhu Y, Huang W, Liu Z and Wang Z 2022 J. Cluster Sci. [27] Yan L J, Shao J M and Li Y Q 2020 Chin. Phys. B29 125101 [28] Jin R X, Liu C, Zhao S, Das A, Xing H Z, Gayathri C, Xing Y, Rosi N L, Gil R R and Jin R C 2015 ACS Nano.9 8530 [29] Bartholomew A K, Meirzadeh E, Stone I B, Koay C S, Nuckolls C, Steigerwald M L, Crowther A C and Roy X 2022 J. Am. Ceram. Soc.144 1119 [30] Reed D A, Hochuli T J, Gadjieva N A, He S, Wiscons R A, Bartholomew A K, Champsaur A M, Steigerwald M L, Roy X and Nuckolls C 2022 J. Am. Ceram. Soc.144 306 [31] Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E and Smalley R E 1992 Science257 1661 [32] Zhao K and Pitzer R M 1996 J. Phys. Chem.100 4798 [33] Dognon J P, Clavaguera C and Pyykko P 2009 J. Am. Chem. Soc.131 238 [34] Ryzhkov M V, Ivanovskii A L and Delley B 2012 Comput. Theor. Chem.985 46 [35] Dai X, Gao Y, Jiang W R, Lei Y Y and Wang Z G 2015 Phys. Chem. Chem. Phys.17 23308 [36] Xie W Y, Zhu Y, Wang J P, Cheng A H and Wang Z G 2019 Chin. Phys. Lett.36 116401 [37] Hou L, Cui X, Guan B, Wang S, Li R, Liu Y, Zhu D and Zheng J 2022 Nature606 507 [38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys.132 154104 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [40] Binkley J S, Pople J A and Hehre W J 1980 J. Am. Ceram. Soc.102 939 [41] Andrae D, Häußermann U, Dolg M, Stoll H and Preuß H 1990 Theor. Chim. Acta77 123 [42] Shin H, Schwarze A, Diehl R D, Pussi K, Colombier A, Gaudry É, Ledieu J, McGuirk G M, Serkovic Loli L N, Fournée V, Wang L L, Schull G and Berndt R 2014 Phys. Rev. B89 245428 [43] Lu X, Grobis M, Khoo K H, Louie S G and Crommie M F 2004 Phys. Rev. B70 115418 [44] Tzeng C T, Lo W S, Yuh J Y, Chu R Y and Tsuei K D 2000 Phys. Rev. B61 2263 [45] Honig B and Karplus M 1971 Nature229 558 [46] Maseras F and Morokuma K 1995 J. Comput. Chem.16 1170 [47] Chung L W, Sameera W M C, Ramozzi R, Page A J, Hatanaka M, Petrova G P, Harris T V, Li X, Ke Z, Liu F, Li H B, Ding L and Morokuma K 2015 Chem. Rev.115 5678 [48] Rappé A K, Casewit C, Colwell K S, Goddard W A and Skiff W M 1992 J. Am. Ceram. Soc.114 10024 [49] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian, Inc., Wallingford CT [50] Lu T and Chen F 2012 J. Comput. Chem.33 580 [51] Ohno K, Maruyama Y, Esfarjani K, Kawazoe Y, Sato N, Hatakeyama R, Hirata T and Niwano M 1996 Phys. Rev. Lett.76 3590 [52] Dunk P W, Kaiser N K, Mulet-Gas M, Rodríguez-Fortea A, Poblet J M, Shinohara H, Hendrickson C L, Marshall A G and Kroto H W 2012 J. Am. Ceram. Soc.134 9380 [53] Ma G H, Shen X, Sun L L, Zhang R X, Wei P, Sanvito S and Hou S M 2010 Nanotechnology21 495202 [54] Xie W Y, Yu F M, Wu X C, Liu Z, Yan Q and Wang Z G 2021 Phys. Chem. Chem. Phys.23 15899 [55] Yu F M, Zhu Y, Gao Y, Wang R, Huang W R, Gao Y and Wang Z G 2022 Nano Res.15 8665 [56] Lu T and Chen Q 2022 J. Comput. Chem.43 539
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.