Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124401    DOI: 10.1088/1674-1056/ab4d3e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization resolved analysis of phonon transport in a multi-terminal system

Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉)
College of Electronic and Mechanical Engineering, Nanjing Forestry University, Nanjing, 210037, China
Abstract  The atomistic Green's function method is improved to compute the polarization resolved phonon transport in a multi-terminal system. Based on the recent developments in literature, the algorithm is simplified. The complex phonon band structure of a semi-infinite periodic terminal is obtained by the generalized eigenvalue equation. Then both the surface Green's function and phonon group velocity in the terminal are determined from the wave modes propagating away from the scattering region along the terminal. With these key ingredients, the individual phonon mode transmittance between the terminals can be calculated. The feasibility and validity of the method are demonstrated by the chain example compared with the wave packet method, and an example of graphene nanojunction with three terminals.
Keywords:  Green'      s function method      phonon transport      multi-terminal systems  
Received:  16 June 2019      Revised:  13 August 2019      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51376094) and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents, China.
Corresponding Authors:  Yun-Feng Gu     E-mail:  gu_yunfeng@sina.com

Cite this article: 

Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉) Polarization resolved analysis of phonon transport in a multi-terminal system 2019 Chin. Phys. B 28 124401

[1] Chen X B, Liu Y Z and Duan W H 2018 Small Methods 2 1700343
[2] Mingo N and Yang L 2003 Phys. Rev. B 68 245406
[3] Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) p. 285
[4] Wang J and Wang J S 2006 Phys. Rev. B 74 054303
[5] Wang J S, Wang J and Lu J T 2008 Eur. Phys. J. B 62 381
[6] Wang J and Wang J S 2009 J. Appl. Phys. 105 063509
[7] Huang Z, Murthy J Y and Fisher T S 2011 J. Heat Trans. T. ASME 133 114502
[8] Ong Z Y and Zhang G 2015 Phys. Rev. B 91 174302
[9] Latour B, Shulumba N and Minnich A J 2017 Phys. Rev. B 96 104310
[10] Sadasivam S, Waghmare U V and Fisher T S 2017 Phys. Rev. B 96 174302
[11] Ong Z Y 2018 J. Appl. Phys. 124 151101
[12] Yang L, Latour B and Minnich A J 2018 Phys. Rev. B 97 205306
[13] Zhang L F, Wang J S and Li B W 2009 New J. Phys. 11 113038
[14] Gu Y F, Wu X L and Wu H Z 2016 Acta Phys. Sin. 65 248104 (in Chinese)
[15] Sartipi Z, Hayati A and Vahedi J 2018 J. Chem. Phys. 149 114103
[16] Sadasivam S, Che Y H, Huang Z, Chen L, Kumar S and Fisher T S 2014 Ann. Rev. Heat Transfer 17 89
[17] Gu Y F and Wang J L 2017 Numer. Heat Tr. B-Fund. 72 71
[18] Zhang W, Fisher T S and Mingo N 2007 Numer. Heat Tr. B-Fund. 51 333
[19] Gu Y F, Wu X L and Ni X Y 2016 Numer. Heat Tr. B-Fund. 70 200
[20] Ong Z Y 2018 Phys. Rev. B 98 195301
[21] Chen G 2005 Nanoscale Energy Transfer and Conversion (New York: Oxford University Press) p. 44
[22] Kittel C 2005 Introduction to Solid State Physics (New York: John Wiley & Sons, Inc) p. 98
[23] Deymier P A 2013 Acoustic Metamaterials and Phononic Crystals (New York: Springer) p. 16
[24] Gu Y F 2015 Comp. Mater. Sci. 110 345
[25] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p. 166
[26] Scuracchio P, Costamagna S, Peeters F M and Dobry A 2014 Phys. Rev. B 90 035429
[1] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[2] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[3] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[4] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[5] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[6] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[7] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[8] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[9] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[10] Surface effects on the thermal conductivity of silicon nanowires
Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤). Chin. Phys. B, 2018, 27(3): 036801.
[11] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[12] Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants
Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣). Chin. Phys. B, 2017, 26(9): 097301.
[13] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[14] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[15] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
No Suggested Reading articles found!