ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application |
Jie Cheng(程杰)1,†, Jiahao Xu(徐家豪)2, Yinjie Xiang(项寅杰)1, Shengli Liu(刘胜利)1, Fengfeng Chi(迟逢逢)1, Bin Li(李斌)1, and Peng Dong(董鹏)3,‡ |
1 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China |
|
|
Abstract The photonic spin Hall effect (PSHE), characterized by two splitting beams with opposite spins, has great potential applications in nano-photonic devices, optical sensing fields, and precision metrology. We present the significant enhancement of terahertz (THz) PSHE by taking advantage of the optical Tamm state (OTS) in InSb-distributed Bragg reflector (DBR) structure. The spin shift of reflected light can be dynamically tuned by the structural parameters (e.g. the thickness) of the InSb-DBR structure as well as the temperature, and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm. Moreover, we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×104 mm/RIU and good stability. This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on InSb-supported THz long-range surface plasmon resonance. These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.
|
Received: 07 June 2022
Revised: 13 September 2022
Accepted manuscript online: 19 September 2022
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175107 and 12004194) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY220030). |
Corresponding Authors:
Jie Cheng, Peng Dong
E-mail: chengj@njupt.edu.cn;2021101298@niit.edu.cn
|
Cite this article:
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏) Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application 2022 Chin. Phys. B 31 124202
|
[1] Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901 [2] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796 [3] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603 [4] Cheng J, Xiang Y J, Xu J H, Liu S L and Dong P 2022 IEEE Sens. J. 22 12754 [5] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105 [6] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L and Wen S C 2020 Opt. Lett. 45 877 [7] Luo H L, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806 [8] Zhou X X and Ling X H 2016 IEEE Photon. J. 8 4801108 [9] Cheng J, Xiang Y J, Wang G J, Xu J H, Dong P, Li B, Chi F F and Liu S L 2022 Appl. Opt. 61 4693 [10] Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104 [11] Dong P, Cheng J, Da H X and Yan X H 2020 New J. Phys. 22 113007 [12] Zhou X X, Lin X, Xiao Z C, Low T, Alú A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429 [13] Zhou H C, Yang G, Wang K, Long H and Lu P X 2010 Opt. Lett. 45 4112 [14] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415 [15] Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102 [16] Jiang L Y, Tang J, Wang Q K, Wu Y X, Zheng Z W, Xiang Y J and Dai X Y 2019 Chin. Opt. Lett. 17 020008 [17] Shen P, Yao M N, Liu J S, Long Y B, Guo W B and Shen L 2019 J. Mater. Chem. A 7 4102 [18] Kavokin A, Shelykh I and Malpuech G 2005 Appl. Phys. Lett. 87 261105 [19] Messelot S, Symonds C, Bellessa J, Tignon J, Dhillon S, Brubach J B, Roy P and Mangeney J 2020 ACS Photon. 7 2906 [20] Tang J, Xu J, Zheng Z W, Dong H, Dong J, Qian S G, Guo J, Jiang L Y and Xiang Y J 2019 Chin. Opt. Lett. 17 020007 [21] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil'ev A P, Mikhrin V S and Kavokin A V 2008 Appl. Phys. Lett. 92 251112 [22] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2009 Appl. Phys. Lett. 95 151114 [23] Tian H S, Yang Y, Tang J, Jiang L Y and Xiang Y J 2021 Results Phys. 25 104300 [24] Madelung O and Meyerhofer D 1964 Physics of II!I-V Compounds (New York: John Wiley & Sons) [25] Wang P X, Wan B F, Peng H M, Ma Y, Zhang H F and Zhang D 2021 Opt. Quantum Electron. 53 113 [26] Rivas J G, Janke C, Bolivar P H and Kurz H 2005 Opt. Express 13 847 [27] Sánchez-Gil J A and Rivas J G 2006 Phys. Rev. B 73 205410 [28] Oszwaldowski M and Zimpe M 1988 Phys. Chem. Solids 49 1179 [29] Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801 [30] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478 [31] Lu G, Zhang K Y, Zhao Y P, Zhang L, Shang Z Q, Zhou H Y, Diao C and Zhou X C 2021 Nanomaterials 11 3447 [32] Cheng M, Fu P, Tang X T, Chen S Y, Chen X Y, Lin Y T and Feng S Y 2018 J. Opt. Soc. Am. B 35 1829 [33] Cheng J, Wang G J, Dong P, Liu D P, Chi F F and Liu S L 2022 Chin. Phys. B 31 014205 [34] Chamoli S K, Singh S and Guo C L 2020 IEEE Sens. J. 20 4628 [35] Lam C C C, Mandamparambil R, Sun T, Grattan K T V, Nanukuttan S V, Taylor S E and Basheer P A M 2009 IEEE Sens. J. 9 525 [36] Zhou X X, Sheng L J and Ling X H 2018 Sci. Rep. 8 1221 [37] Asri M I A, Hasan M N, Fuaad M R A, Yunos Y M and Ali M S M 2021 IEEE Sens. J. 21 18381 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|