Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116101    DOI: 10.1088/1674-1056/ac80aa
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A theoretical investigation of glide dislocations in BN/AlN heterojunctions

Shujun Zhang(张淑君)
Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China
Abstract  Glide dislocations with periodic pentagon-heptagon pairs are investigated within the theory of one-dimensional misfit dislocations in the framework of an improved Peierls-Nabarro (P-N) equation in which the lattice discreteness is fully considered. We find an approximate solution to handle misfit dislocations, where the second-order derivative appears in the improved P-N equation. This result is practical for periodic glide dislocations with narrow width, and those in the BN/AlN heterojunction are studied. The structure of the misfit dislocations and adhesion work are obtained explicitly and verified by first-principles calculations. Compared with shuffle dislocations, the compression force in the tangential direction of glide dislocations has a greater impact on the normal direction, and the contributions of the normal displacement to the interfacial energy cannot simply be ignored.
Keywords:  interfacial misfit dislocation      misfit dislocation energy  
Received:  17 May 2022      Revised:  11 July 2022      Accepted manuscript online:  13 July 2022
PACS:  61.72.Bb (Theories and models of crystal defects)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Corresponding Authors:  Shujun Zhang     E-mail:  shjzhang@sanxiau.edu.cn

Cite this article: 

Shujun Zhang(张淑君) A theoretical investigation of glide dislocations in BN/AlN heterojunctions 2022 Chin. Phys. B 31 116101

[1] Frank F C and van der Merwe J H 1949 Proc. R. Soc. London A 198 205
[2] Peierls R 1940 Proc. Phys. Soc. 52 34
[3] Nabarro F R N 1947 Proc. Phys. Soc. 59 256
[4] van der Merwe J H 1950 Proc. Phys. Soc. A 63 616
[5] van der Merwe J H 1963 J. Appl. Phys. 34 117
[6] Dundurs J and Hetenyi M 1961 J. Appl. Mech. 28 103
[7] Muskhelishvili N I 2013 Some basic problems of the mathematical theory of elasticity (Berlin: Springer Science)
[8] Dundurs J 1968 J. Appl. Phys. 39 4152
[9] Yao Y, Wang T and Wang C 1999 Phys. Rev. B 59 8232
[10] Yao Y and Wang T C 1999 Acta Mater. 47 3063
[11] Zhang S J and Wang S F 2020 Chin. Phys. B 29 056102
[12] Zhang S J and Wang S F 2020 J. Appl. Phys. 127 085303
[13] Zhang H L, Wang S F, Wang R and Jiao J 2010 Eur. Phys. J. B 73 489
[14] Yao Y, Wang S F, Bai J H and Wang R 2016 Physica E 84 340
[15] Rodney D, Ventelon L, Clouet E, Pizzagalli L and Willaime F 2017 Acta Mater. 124 633
[16] Puls M P and Norgett M J 1976 J. Appl. Phys. 47 466
[17] Hoagland R G, Hirth J P and Gehlen P C 1976 Philos. Mag. 34 413
[18] Bacon D J and Martin J W 1981 Philos. Mag. A 43 883
[19] Duesbery M S, Joos B and Michel D J 1991 Phys. Rev. B 43 5143
[20] Pasianot R, Diana Farkas and Savino E J 1991 Journal de Physique III 1 997
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Bl?chl P E 1994 Phys. Rev. B 50 17953
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Hirth J P and Lothe J 1982 Theory of dislocations (Florida: Krieger)
[1] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
No Suggested Reading articles found!