CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2 |
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛)† |
Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Superconductivity has been realized in films of La1-xSrxNiO2. Here we report synthesis and characterization of polycrystalline samples of La1-xSrxNiO3 and La1-xSrxNiO2 (0 ≤ x ≤ 0.2). Magnetization and resistivity measurements reveal that La1-xSrxNiO3 are paramagnetic metal and La1-xSrxNiO2 exhibit an insulating behavior. Superconductivity is not detected in bulk samples of La1-xSrxNiO2. The absence of superconductivity in bulk La1-xSrxNiO2 may be due to the generation of hydroxide during reduction, a small amount of nickel impurity, or incomplete reduction of apical oxygen. The effect of interface in films of La1-xSrxNiO2 may also play a role for superconductivity.
|
Received: 29 April 2022
Revised: 08 June 2022
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Fund: Work at Sun Yat-Sen University was supported by the National Natural Science Foundation of China (Grant Nos. 12174454, 11904414, 11904416, and U2130101), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120015), the Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201011123), and the National Key Research and Development Program of China (Grant No. 2019YFA0705702). |
Corresponding Authors:
Meng Wang
E-mail: wangmeng5@mail.sysu.edu.cn
|
Cite this article:
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛) Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2 2022 Chin. Phys. B 31 107401
|
[1] Li D, Lee K, Wang B Y, et al. 2019 Nature 572 624 [2] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404 [3] Hansmann P, Yang X, Toschi A, et al. 2009 Phys. Rev. Lett. 103 016401 [4] Zhou G, Jiang F, Zang J, et al. 2018 ACS Appl. Mater. 10 1463 [5] Klimczuk T, McQueen T M, Williams A J, et al. 2009 Phys. Rev. B 79 012505 [6] Liu H, Hu X, Guo H, et al. 2022 arXiv:2205.00116 [7] Anisimov V I, Bukhvalov D and Rice T M 1999 Phys. Rev. B 59 7901 [8] Botana A S, Pardo V and Norman M R 2017 Phys. Rev. Mater. 1 021801 [9] Zhang J, Botana A S, Freeland J W, et al. 2017 Nat. Phys. 13 864 [10] Li Q, He C, Zhu X, et al. 2020 Sci. Chin. Phys. Mech. Astron. 64 227411 [11] Liu Z, Sun H, Huo M, et al. 2022 arXiv:2205.00950 [12] Gu Y, Zhu S, Wang X, et al. 2020 Commun. Phys. 3 84 [13] Osada M, Wang B Y, Goodge B H, et al. 2020 Nano Lett. 20 5735 [14] Osada M, Wang B Y, Lee K, et al. 2020 Phys. Rev. Mater. 4 121801 [15] Zeng S, Tang C S, Yin X, et al. 2020 Phys. Rev. Lett. 125 147003 [16] Lu H, Rossi M, Nag A, et al. 2021 Science 373 213 [17] Pan G A, Ferenc Segedin D, LaBollita H, et al. 2022 Nat. Mater. 21 160 [18] Gao J, Peng S, Wang Z, et al. 2021 Natl. Sci. Rev. 8 nwaa218 [19] Hao J, Fan X, Li Q, et al. 2021 Phys. Rev. B 103 205120 [20] Gu Q, Li Y, Wan S, et al. 2020 Nat. Commun. 11 6027 [21] Gu Q and Wen H H 2022 Innovation (N Y) 3 100202 [22] Azuma M, Hiroi Z, Takano M, et al. 1992 Nature 356 775 [23] Hiroi Z, Azuma M, Takano M, et al. 1993 Physica C 208 286 [24] Osada M, Wang B Y, Goodge B H, et al. 2021 Adv. Mater. 33 2104083 [25] Zeng S, Li C, Chow L E, et al. 2022 Sci. Adv. 8 eabl9927 [26] Cui Y, Li C, Li Q, et al. 2021 Chin. Phys. Lett. 38 067401 [27] Zhou X, Zhang X, Yi J, et al. 2022 Adv. Mater. 34 2106117 [28] Zhou T, Gao Y and Wang Z 2020 Sci. Chin. Phys. Mech. Astron. 63 287412 [29] Gao Q, Zhao Y, Zhou X J, et al. 2021 Chin. Phys. Lett. 38 077401 [30] Lee K, Goodge B H, Li D, et al. 2020 APL Mater. 8 041107 [31] Xiang Y, Li Y, Li Y, et al. 2021 Chin. Phys. Lett. 38 047401 [32] Ding X, Shen S, Leng H, et al. 2022 Sci. Chin. Phys. Mech. Astron. 65 267411 [33] He C, Ming X, Li Q, et al. 2021 J. Phys. Condens Matter. 33 265701 [34] Li Q, He C, Si J, et al. 2020 Commun. Mater. 1 16 [35] Wang B X, Zheng H, Krivyakina E, et al. 2020 Phys. Rev. Mater. 4 084409 [36] Puphal P, Wu Y M, Fursich K, et al. 2021 Sci. Adv. 7 eabl8091 [37] Shivakumara C, Hegde M S, Prakash A S, et al. 2003 Solid State Sci. 5 351 [38] Mugavero S J, Gemmill W R, Roof I P, et al. 2009 J. Solid State Chem. 182 1950 [39] Rietveld H M 1969 J. Appl. Crystallogr. 2 65 [40] Licci F, Turilli G and Ferro P 1997 J. Magn. Magn. Mater. 170 240 [41] Kawai M, Inoue S, Mizumaki M, et al. 2009 Appl. Phys. Lett. 94 082102 [42] Geisler B and Pentcheva R 2021 Phys. Rev. Research 3 013261 [43] Hayward M A, Green M A, Rosseinsky M J, et al. 1999 J. Am. Chem. Soc. 121 8843 [44] Rodríguez E, Álvarez I, López M L, et al. 1999 J. Solid State Chem. 148 479 [45] Alonso J A, Martínez-Lope M J and Hidalgo M A 1995 J. Solid State Chem. 116 146 [46] Guo H, Li Z W, Zhao L, et al. 2018 Nat. Commun. 9 43 [47] Zhou J S, Marshall L G and Goodenough J B 2014 Phys. Rev. B 89 245138 [48] Gayathri N, Raychaudhuri A K, Xu X Q, et al. 1998 J. Phys. Condens. Matter 11 2901 [49] Rajeev A T A K P 1999 J. Phys. Condens. Matter 11 3291 [50] Yang H, Wen Z, Shu J, et al. 2021 Solid State Commun. 336 114420 [51] Yin J, Wu C, Li L, et al. 2020 Phys. Rev. Mater. 4 013405 [52] Sun H, Chen C, Hou Y, et al. 2021 Sci. Chin. Phys. Mech. Astron. 64 118211 [53] Li L, Hu X, Liu Z, et al. 2021 Sci. Chin. Phys. Mech. Astron. 64 287412 [54] Crespin M, Isnard O, Dubois F, et al. 2005 J. Solid State Chem. 178 1326 [55] Fu Y, Wang L, Cheng H, et al. 2020 arXiv:1911.03177 [56] Liu Z, Z. Ren, W. Zhu, et al. 2020 npj Quantum Mater. 5 31 ) [57] Islam M, Koley S and Basu S 2021 Eur. Phys. J. B 94 187 [58] Krishna J, LaBollita H, Fumega A O, et al. 2020 Phys. Rev. B 102 224506 [59] Si L, Xiao W, Kaufmann J, et al. 2020 Phys. Rev. Lett. 124 166402 [60] Onozuka T, Chikamatsu A, Katayama T, et al. 2016 Dalton Trans. 45 12114 [61] Kobayashi Y, Hernandez O J, Sakaguchi T, et al. 2012 Nat. Mater. 11 507 [62] Helps R M, Rees N H and Hayward M A 2010 Inorg. Chem. 49 11062 [63] Hayward M A, Cussen E J, Claridge J B, et al. 2002 Science 295 1882 [64] Zhou X R, Feng Z X, Qin P X, et al. 2020 Rare Metals 39 368 [65] Bernardini F and Cano A 2020 J. Phys. Matter 3 03 [66] He R, Jiang P, Lu Y, et al. 2020 Phys. Rev. B 102 035118 [67] Ortiz R A, Menke H, Misják F, et al. 2021 Phys. Rev. B 104 165137 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|