Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014701    DOI: 10.1088/1674-1056/26/1/014701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of a self-propelled particle under different driving modes in a channel flow

Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂)
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Abstract  In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming (exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits high-velocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals.
Keywords:  lattice Boltzmann method      singularity distribution method      self-propelled particle      driving modes  
Received:  06 May 2016      Revised:  28 August 2016      Accepted manuscript online: 
PACS:  05.20.Dd (Kinetic theory)  
  47.11.Qr (Lattice gas)  
  47.57.E- (Suspensions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11632016).
Corresponding Authors:  Jianzhong Lin     E-mail:  mecjzlin@public.zju.edu.cn

Cite this article: 

Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂) Dynamics of a self-propelled particle under different driving modes in a channel flow 2017 Chin. Phys. B 26 014701

[1] Dreyfus R, Baudry J, Roper M L, Stone H A, Fermigier M and Bibette J 2005 Nature 437 862
[2] Yu T S, Lauga E and Hosoi A E 2006 Phys. Fluids 18 091701
[3] Brennen C and Winet H 1977 Annu. Rev. Fluid Mech. 9 339
[4] Ajdari A and Stone H A 1999 Phys. Fluids 11 1275
[5] Paxton W F, Kistler K C, Olmeda C C, Sen A, Angelo S K S, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
[6] Golestanian R, Liverpool T B and Ajdari A 2005 Phys. Rev. Lett. 94 220801
[7] Gouin E, Welch M D and Cossart P 2005 Curr. Opin. Microbiol. 8 35
[8] Leshansky A M 2006 Phys.Rev. E 74 012901
[9] Schmittmann B and Zia R K P 1995 Statistical Mechanics of Driven Diffusive Systems, in Phase Transitions and Critical Phenomena (New York:Academic) Vol. 17, p. 1
[10] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R S 2013 Rev. Mod. Phys. 85 1143
[11] Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84 3017
[12] Kim M J and Breuer K S 2004 Phys. Fluids 16 L78
[13] Hernández-Ortiz J P, Stoltz C G and Graham M D 2005 Phys. Rev. Lett. 95 204501
[14] Underhill P T, Hernández-Ortiz J P and Graham M D 2008 Phys. Rev. Lett. 100 248101
[15] Donald L Koch and Ganesh S 2011 Annu. Rev. Fluid Mech. 43 637
[16] Lighthill M J 1952 Comm. Pure Appl. Math. 5 1091
[17] Blake J R 1971 J. Fluid Mech. 46 199
[18] Magar V, Goto T and Pedley T J 2003 J. Mech. Appl. Maths. 56 65
[19] Ishikawa T, Simmonds M P and Pedley T J 2006 J. Fluid Mech. 568 119
[20] Ishikawa T and Pedley T J 2007 J. Fluid Mech. 588 399
[21] Ishikawa T and Pedley T J 2007 J. Fluid Mech. 588 437
[22] Evans A A, Ishikawa T, Yamaguchi T and Lauga E 2011 Phys. Fluids 23 111702
[23] Underhill P T, Hernández-Ortiz J P and Graham M D 2008 Phys. Rev. Lett. 100 248101
[24] Saintillan D and Shelley M J 2007 Phys. Rev. Lett. 99 058102
[25] Zhang T, Shi B C and Chai Z H 2015 Acta Phys. Sin. 64 154701(in Chinese)
[26] Nie D M and Lin J Z 2010 Chin. Phys. Lett. 27 104701
[27] Li K and Zhong C W 2015 Chin. Phys. B 24 050501
[28] Song B W, Ren F, Hu H B and Huang Q G 2015 Chin. Phys. B 24 014703
[29] Zhang Y, Pan G and Huang Q G 2015 Acta Phys. Sin. 64 184702(in Chinese)
[30] Ladd A J C, Colvin M E and Frenkei D 1988 Phys. Rev. Lett. 60 975
[31] Ladd A J C 1994 J. Fluid Mech. 271 285
[32] Ladd A J C 1994 J. Fluid Mech. 271 311
[33] Aidun C K and Lu Y 1995 J. Stat. Phys. 81 49
[34] Aidun C K, Lu Y and Ding E 1998 J. Fluid Mech. 373 287
[35] Ding E and Aidun C K 2003 J. Stat. Phys. 112 685
[36] Ramachandran S, Sunil Kumar P B and Pagonabarraga I 2006 Eur. Phys. J. E 20 151
[37] Alarcón F and Pagonabarraga I 2013 J. Mol. Liq. 185 56
[38] Chwang A T and Wu T Y T 1974 J. Fluid Mech. 63 607
[39] Chwang A T and Wu T Y T 1975 J. Fluid Mech. 67 787
[40] Chwang A T 1975 J. Fluid Mech. 72 17
[41] Ku X K and Lin J Z 2009 Phys. Scr. 80 025801
[42] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511
[43] Chen H, Chen S and Matthaeus W H 1992 Phys. Rev. A 45 R5339
[44] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[45] Happel J and Brenner H 1965 Low Reynolds Number Hydrodynamics, 1st edn. (Hague:Martinus Nijhoff Publishers)
[46] Keller S R and Wu T Y 1977 J. Fluid Mech. 80 259
[1] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[2] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[3] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[4] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[5] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[6] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[7] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[8] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[9] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[10] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[11] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[12] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[13] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[14] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[15] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
No Suggested Reading articles found!