|
|
Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor |
Hongtao Yan(闫宏涛)1,2, Qiang Gao(高强)1, Chunyao Song(宋春尧)1,2, Chaohui Yin(殷超辉)1,2, Yiwen Chen(陈逸雯)1,2, Fengfeng Zhang(张丰丰)3, Feng Yang(杨峰)3, Shenjin Zhang(张申金)3, Qinjun Peng(彭钦军)3, Guodong Liu(刘国东)1,2,4, Lin Zhao(赵林)1,2,4, Zuyan Xu(许祖彦)3, and X. J. Zhou(周兴江)1,2,4,5,† |
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi2Sr1.6La0.4CuO6+δ superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity.
|
Received: 17 May 2022
Revised: 17 May 2022
Accepted manuscript online: 23 May 2022
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414 and 11974404), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800, 2017YFA0302900, 2018YFA0305602, and 2018YFA0704200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021006), the Synergetic Extreme Condition User Facility (SECUF) and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06). |
Corresponding Authors:
X. J. Zhou
E-mail: XJZhou@iphy.ac.cn
|
Cite this article:
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江) Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor 2022 Chin. Phys. B 31 087401
|
[1] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61 [2] Loeser A G, Shen Z X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325 [3] Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51 [4] Emery V J and Kivelson S A 1995 Nature 374 434 [5] Kampf A and Schrieffer J R 1990 Phys. Rev. B 41 6399 [6] Chakravarty S, Laughlin R B, Morr D K and Nayak C 2001 Phys. Rev. B 63 094503 [7] Li J X, Wu C Q and Lee D H 2006 Phys. Rev. B 74 184515 [8] Hashimoto M, He R H, Tanaka K, Testaud J P, Meevasana W, Moore R G, Lu D H, Yao H, Yoshida Y, Eisaki H, Devereaux T P, Hussain Z and Shen Z X 2010 Nat. Phys. 6 414 [9] He R H, Hashimoto M, Karapetyan H, Koralek J D, Hinton J P, Testaud J P, Nathan V, Yoshida Y, Yao H, Tanaka K, Meevasana W, Moore R G, Lu D H, Mo S K, Ishikado M, Eisaki H, Hussain Z, Devereaux T P, Kivelson S A, Orenstein J, Kapitulnik A and Shen Z X 2011 Science 331 1579 [10] Lee P A 2014 Phys. Rev. X 4 031017 [11] Chen S D, Hashimoto M, He Y, Song D, Xu K J, He J F, Devereaux T P, Eisaki H, Lu D H, Zaanen J and Shen Z X 2019 Science 366 1099 [12] Yang H B, Rameau J D, Johnson P D, Valla T, Tsvelik A and Gu G D 2008 Nature 456 77 [13] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105 [14] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101 [15] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Tech. 22 045010 [16] Zheng G Q, Kuhns P L, Reyes A P, Liang B and Lin C T 2005 Phys. Rev. Lett. 94 047006 [17] Ma J H, Pan Z H, Niestemski F C, Neupane M, Xu Y M, Richard P, Nakayama K, Sato T, Takahashi T, Luo H Q, Fang L, Wen H H, Wang Z Q, Ding H and Madhavan V 2008 Phys. Rev. Lett. 101 207002 [18] Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757 [19] Ding H, Campuzano J C, Bellman A F, Yokoya T, Norman M R, Randeria M, Takahashi T, Yoshida H K, Mochiku T, Kadowaki K and Jennings G 1995 Phys. Rev. Lett. 74 2784 [20] Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247 [21] Liu J, Zhao L, Gao Q, Ai P, Zhang L, Xie T, Huang J W, Ding Y, Hu C, Yan H T, Song C Y, Xu Y, Li C, Cai Y Q, Rong H T, Wu D S, Liu G D, Wang Q Y, Huang Y, Zhang F F, Yang F, Peng Q J, Li S L, Yang H X, Li J Q, Xu Z Y and Zhou X J 2019 Chin. Phys. B 28 077403 [22] Gao Q, Yan H T, Liu J, Ai P, Cai Y Q, Li C, Luo X Y, Hu C, Song C Y, Huang J W, Rong H T, Huang Y, Wang Q Y, Liu G D, Gu G D, Zhang F F, Yang F, Zhang S J, Peng Q J, Xu Z Y, Zhao L, Xiang T and Zhou X J 2020 Phys. Rev. B 101 014513 [23] Sun X, Zhang W T, Zhao L, Liu G D, Gu G D, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y and Zhou X J 2018 Chin. Phys. Lett. 35 017401 [24] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|